Überlagerung/Decktransformation/Bestimmtheit/Fakt/Beweis
Beweis
Es sei die Decktransformation. Wir betrachten die Menge , die nach Voraussetzung nicht leer ist. Wir zeigen, dass sie sowohl offen als auch abgeschlossen ist. Wegen hausdorffsch ist die Fixpunktmenge nach Aufgabe abgeschlossen. Es sei ein Fixpunkt mit
Es sei eine offene Umgebung, worüber die Überlagerung trivialisiert. Wegen der Voraussetzung über den lokalen Wegzusammenhang können wir annehmen, dass wegzusammenhängend ist. Es sei die entsprechende offene Umgebung von . Dann ist und somit auch zusammenhängend und wegen ist bereits . Somit gilt für die Bedingung , also ist auf die Identität. Die Fixpunktmenge ist also auch offen. Aufgrund des Zusammenhangs von ist sie dann gleich ganz .