(x,y)' ist (x^2-ty,txy)/Polygonzugverfahren/Beispiel/Hohe Berechnung/Computer/Aufgabe/Lösung


(1)
n=0, t=0.0: (1.0, 1.0)
n=1, t=0.1: (1.09, 1.0109)
n=2, t=0.2: (1.188592, 1.034930953056)
n=3, t=0.30000000000000004: (1.29881916565472, 1.0752565977647532)
n=4, t=0.4: (1.4245020242513322, 1.136524805768973)
n=5, t=0.5: (1.5705963856724978, 1.2257758933773673)
n=10, t=0.9999999999999999: (2.9585130510110584, 2.8833302700457657)

(2)
n=0, t=0.0: (1.0, 1.0)
n=100, t=1.0000000000000007: (5.727757590658758, 3.9276796646563428)

(3)
n=0, t=0.0: (1.0, 1.0)
n=1000, t=1.0000000000000007: (6.625180927546903, 4.222827662787407)

(4)
n=0, t=0.0: (1.001,0.999)
n=1000, t=1.0000000000000007: (6.712065015606706, 4.256422221733862)

(5)
n=0, t=0.0: (1.01,0.99)
n=1000, t=1.0000000000000007: (7.587529626751005, 4.594753405734491)

(6)
n=0, t=0.0: (1.1,0.9)
n=1000, t=1.0000000000000007: (2.1675510704135874E20, 1.562270267279122E37)

(7)
n=0, t=-3.0: (-2.0,5.0)n=100, t=6.999999999999993: (Infinity, Infinity)

(8)
n=0, t=0.0: (1.0,0.0)n=1000, t=1.0000000000000007: (193.13676042981598, 0.0)

Von Lukas Freudenberg.