Abbildungen/R/G nach W/Tangential äquivalent/Aufgabe
Es seien endlichdimensionale -Vektorräume und eine offene Teilmenge. Weiter seien Abbildungen und . Wir nennen im Punkt tangential äquivalent, wenn der Limes
existiert und gleich ist.
- Zeige, dass dadurch eine Äquivalenzrelation auf der Abbildungsmenge von nach gegeben ist.
- Es sei total differenzierbar. Zeige, dass zu seiner linearen Approximation tangential äquivalent ist.
- Es seien und tangential äquivalent. Zeige, dass in diesem Fall genau dann in total differenzierbar ist, wenn dies für gilt, und dass ihre totalen Differentiale im Punkt übereinstimmen.