Abgeschlossene Kreisscheibe/Nicht durch abzählbar viele Rechtecke überdeckbar/Aufgabe/Lösung


Nehmen wir an, es sei mit abgeschlossenen Rechtecken . Dies führen wir zu einem Widerspruch. Es sei ein Randpunkt der Kreisscheibe, also ein Punkt mit . Es ist dann für mindestens ein . Wir behaupten, dass ein Eckpunkt dieses Rechtecks ist.

Dazu zeigen wir, dass beide Koordinaten und Seitenkoordinaten des Rechtecks sind. Betrachten wir und nehmen wir an, sei keine Seitenkoordinate des Rechtecks, also . Dann gibt es ein derart, dass sowohl als auch zu und damit zu gehören. Also ist

Da man das Vorzeichen bei nichtnegativem positiv und bei negativem negativ wählen kann, steht bei dieser Wahl unter der Wurzel eine Zahl, die größer als ist, was einen Widerspruch bedeutet. Da diese Überlegung auch für die -Koordinate gilt, muss ein Eckpunkt eines Rechtecks sein.

Da nur abzählbar viele Rechtecke beteiligt sind, stehen insgesamt nur abzählbar viele Eckpunkte zur Verfügung. Andererseits gibt es aber überabzählbar viele Punkte auf der Sphäre , wie aus der Bijektion

folgt. Also kann eine abzählbare Überdeckung mit abgeschlossenen Rechtecken in nicht den gesamten Rand und damit nicht die abgeschlossene Kreisscheibe überdecken.