Algebra/Ringhomomorphismus/Erzeugt/Einführung/Textabschnitt
Es seien und kommutative Ringe und sei ein fixierter Ringhomomorphismus. Dann nennt man eine -Algebra.
Häufig ist der Ringhomomorphismus, der zum Begriff der Algebra gehört, vom Kontext her klar und wird nicht explizit aufgeführt. Z.B. ist der Polynomring eine -Algebra, indem man die Elemente aus als konstante Polynome auffasst, oder jeder Ring ist auf eine eindeutige Weise eine -Algebra über den kanonischen Ringhomomorphismus , .
Wir werden den Begriff der Algebra vor allem in dem Fall verwenden, wo der Grundring ein Körper ist. Eine -Algebra kann man stets in natürlicher Weise als Vektorraum über dem Körper auffassen. Die Skalarmultiplikation wird dabei einfach über den Strukturhomomorphismus erklärt. Eine typische Situation ist dabei, dass der Grundkörper ist und ein Zwischenring , , gegeben ist. Dann ist über die Inklusion direkt eine -Algebra.
Wenn man zwei Algebren über einem gemeinsamen Grundring hat, so sind vor allem diejenigen Ringhomomorphismen interessant, die den Grundring mitberücksichtigen. Dies führt zu folgendem Begriff.
Es seien und kommutative -Algebren über einem kommutativen Grundring . Dann nennt man einen Ringhomomorphismus
einen -Algebrahomomorphismus, wenn er zusätzlich mit den beiden fixierten Ringhomomorphismen und verträglich ist.
Zum Beispiel ist jeder Ringhomomorphismus ein -Algebrahomomorphismus, da es zu jedem Ring überhaupt nur den kanonischen Ringhomomorphismus gibt. Mit dieser Terminologie kann man den Einsetzungshomomorphismus jetzt so verstehen, dass der Polynomring mit seiner natürlichen Algebrastruktur und eine weitere -Algebra mit einem fixierten Element vorliegt und dass dann durch ein -Algebrahomomorphismus definiert wird.
Es sei eine -Algebra und sei , , eine Familie von Elementen aus . Dann heißt die kleinste -Unteralgebra von , die alle enthält, die von diesen Elementen erzeugte -Algebra. Sie wird mit bezeichnet.
Man kann diese -Algebra auch als den kleinsten Unterring von charakterisieren, der sowohl als auch die enthält. Wir werden hauptsächlich von erzeugten -Algebren in einer Körpererweiterung sprechen, wobei nur ein einziger Erzeuger vorgegeben ist. Man schreibt dafür dann einfach , und diese -Algebra besteht aus allen -Linearkombinationen von Potenzen von . Dies ist das Bild unter dem durch gegebenen Einsetzungshomomorphismus.
Gelegentlich werden wir auch den kleinsten Unterkörper von betrachten, der sowohl als auch eine Elementfamilie , , enthält. Dieser wird mit bezeichnet, und man sagt, dass die ein Körper-Erzeugendensystem von diesem Körper bilden. Es ist und insbesondere .