Alternierende Gruppe/Polynomring/3/Invariantenring/Beispiel

Die natürliche Operation der alternierenden Gruppe auf dem wird durch den Zykel

erzeugt. Besitzt dritte primitive Einheitswurzeln, so kann man die zugehörige Matrix diagonalisieren und man erhält eine neue Basis mit den Eigenvektoren

Wir führen die neuen Variablen

ein. In dieser Basis ist der erzeugende Automorphismus durch

gegeben und der Invariantenring ist in dieser Basis gleich

Die einzige Relation ist durch gegeben.

Wie sieht der Unterring der symmetrischen Polynome aus? Die Transposition lässt unverändert und vertauscht und . Das bedeutet für den alternierenden Invariantenring, dass und vertauscht werden. Der symmetrische Invariantenring ist daher

Dabei sind

und

Für die Vandermondesche Determinante gilt