Analysis 1/Gemischte Satzabfrage/32/Aufgabe/Lösung
- Für in einem Körper gilt
- Es sei
ein offenes Intervall und
ein Punkt. Es seien
stetige Funktionen, die auf differenzierbar seien mit und mit für . Es sei vorausgesetzt, dass der Grenzwert
existiert. Dann existiert auch der Grenzwert
- Es sei
eine Differentialgleichung mit getrennten Variablen mit stetigen Funktionen
und
wobei keine Nullstelle besitze. Es sei eine Stammfunktion von und eine Stammfunktion von . Weiter sei ein Teilintervall mit . Dann ist eine bijektive Funktion auf sein Bild und die Lösungen dieser Differentialgleichung haben die Form