Analysis 1/Gemischte Satzabfrage/52/Aufgabe/Lösung


  1. Für und ist
  2. Es seien und Potenzreihen mit positiven Konvergenzradien und derart, dass es ein gibt, dass die dadurch definierten Funktionen
    übereinstimmen. Dann ist für alle .
  3. Es sei

    eine inhomogene lineare gewöhnliche Differentialgleichung mit stetigen Funktionen . Es sei eine Stammfunktion von und es sei

    eine Lösung der zugehörigen homogenen linearen Differentialgleichung. Dann sind die Lösungen (auf ) der inhomogenen Differentialgleichung genau die Funktionen

    wobei eine Stammfunktion zu ist.