1.) Lösung folgt noch...
2.) Für die Lösung muss man sich ein gleichschenkeliges Dreieck vorstellen. a = b , α = β {\displaystyle a=b,\quad \alpha =\beta } tan α = G e g e n k a t h e t e A n k a t h e t e = 30 10 = 3 ⇒ α = β ≈ 71 , 565 ∘ {\displaystyle \tan \ \alpha \ =\ {\frac {Gegenkathete}{Ankathete}}\ =\ {\frac {30}{10}}\ =\ 3\quad \Rightarrow \quad \alpha =\beta \approx 71,565^{\circ }} γ = 180 − ( α + β ) ≈ 36 , 87 ∘ {\displaystyle \gamma =180-(\alpha +\beta )\approx 36,87^{\circ }} c = 10 2 + 30 2 ≈ 31 , 62 c m {\displaystyle c={\sqrt {10^{2}+30^{2}}}\approx 31,62cm} a sin α = c sin γ ⇔ a = c sin γ ⋅ sin α ⇒ a = 50 c m {\displaystyle {\frac {a}{\sin \alpha }}={\frac {c}{\sin \gamma }}\quad \Leftrightarrow \quad a={\frac {c}{\sin \gamma }}\cdot \sin \alpha \quad \Rightarrow \quad a=50cm} Für die Lösung muss man von a nur noch 10 cm abziehen. Der See ist 40 cm tief.
3.) a) c 2 = a 2 + b 2 {\displaystyle c^{2}=a^{2}+b^{2}\,} ( p + q ) 2 = h 2 + p 2 + h 2 + q 2 {\displaystyle (p+q)^{2}=h^{2}+p^{2}+h^{2}+q^{2}\,} p 2 + 2 p q + q 2 = 2 h 2 + p 2 + q 2 {\displaystyle p^{2}+2pq+q^{2}=2h^{2}+p^{2}+q^{2}\,} 2 h 2 = 2 p q {\displaystyle 2h^{2}=2pq\,} h 2 = p ⋅ q {\displaystyle h^{2}=p\cdot q}
b) c 2 = a 2 + b 2 {\displaystyle c^{2}=a^{2}+b^{2}\,} c ( p + q ) = a 2 + b 2 {\displaystyle c(p+q)=a^{2}+b^{2}\,} c ⋅ p + c ⋅ q = a 2 + b 2 | − b 2 {\displaystyle c\cdot p+c\cdot q=a^{2}+b^{2}\quad \vert -b^{2}} a 2 = c p + c q − ( h 2 + q 2 ) {\displaystyle a^{2}=cp+cq-(h^{2}+q^{2})\,} a 2 = c p + c q − p q − q 2 {\displaystyle a^{2}=cp+cq-pq-q^{2}\,} a 2 = ( c − q ) ⋅ ( p + q ) {\displaystyle a^{2}=(c-q)\cdot (p+q)\,} a 2 = p ⋅ c _ {\displaystyle {\underline {a^{2}=p\cdot c}}} c ⋅ p + c ⋅ q = a 2 + b 2 | − a 2 {\displaystyle c\cdot p+c\cdot q=a^{2}+b^{2}\quad \vert -a^{2}} b 2 = q ⋅ c _ {\displaystyle {\underline {b^{2}=q\cdot c}}} Herleitung aus dem Höhensatz : h 2 = p q {\displaystyle h^{2}=pq\,} h 2 = ( c − q ) ( c − p ) {\displaystyle h^{2}=(c-q)(c-p)\,} h 2 = c 2 − p c − q c + p q | − h 2 , + p c , + q c {\displaystyle h^{2}=c^{2}-pc-qc+pq\quad \vert -h^{2},+pc,+qc} c 2 = p c + q c = a 2 + b 2 {\displaystyle c^{2}=pc+qc=a^{2}+b^{2}\,} Rest wie oben !