Beschränkte Funktion/Nicht Riemann integrierbar/Beispiel/Aufgabe/Lösung


Es sei

Da es in jedem Intervall positiver Länge sowohl rationale als auch irrationale Zahlen gibt, besitzt eine untere Treppenfunktion zu maximal den Wert und eine obere Treppenfunktion zu besitzt minimal den Wert . Daher ist das Unterintegral gleich und das Oberintegral gleich . Daher existiert das bestimmte Integral nicht.