- Es sei
der Richtungsvektor, bei der Richtungsableitung geht es darum, ob die Abbildung
-
im Nullpunkt als Funktion in differenzierbar ist. Dies ist stets der Fall
(mit dem Wert ),
da der Differenzenquotient zu von beiden Seiten her gegen konvergiert.
- Es sei
und
.
Es sei zunächst
und
.
Es geht um die Abbildung
-
Bei
handelt es sich um die Nullfunktion, die differenzierbar ist. Es sei also
.
Es ist
-
Der zweite Summand ist differenzierbar in , der erste aber nicht, daher ist diese Abbildung nicht differenzierbar und diese Richtungsableitungen existieren nicht.
Für
siehe den nächsten Teil.
- Im Nullpunkt ist die Abbildung total differenzierbar mit dem totalen Differential . Dazu ist zu zeigen, dass für gegen konvergiert. Dies folgt direkt aus der Abschätzung
-
Für einen Punkt der Form mit
existieren nach dem zweiten Teil nicht alle Richtungsableitungen und daher ist in diesen Punkten auch nicht total differenzierbar. Es sei nun
mit
.
Dann gibt es eine hinreichend kleine -Umgebung von derart, dass die erste Koordinate der Punkte aus das gleiche Vorzeichen hat wie . Auf ist
-
und daher ist in diesen Punkten total differenzierbar. Daher existieren in diesen Punkten auch alle Richtungsableitungen.