1. Wir betrachten die Abbildung , die jeder reellen Cauchyfolge ihren Limes zuordnet. Da in jede Cauchyfolge (und zwar eindeutig) konvergiert, ist dies wohldefiniert. Die konstante Folge konvergiert gegen den Wert der Glieder, daher ist die Abbildung surjektiv. Dass ein Ringhomomorphismus vorliegt beruht auf den Rechenregeln für Grenzwerte (siehe Fakt  (1,2)).
  2. Für Folgen und ist der Grenzwert der Folge gleich dem Grenzwert von . Das bedeutet, dass die Abbildung aus Teil (1) eine wohldefinierte Abbildung auf der Quotientenmenge nach definiert. Wegen

    (und ebenso für die Multiplikation) liegt ein Ringhomomorphismus vor, der wie auch surjektiv ist.

  3. Die vordere Abbildung bildet eine reelle Zahl auf die entsprechende konstante Folge ab, und diese konvergiert gegen diese Zahl. Von daher ist die Bijektivität klar.