Dedekindbereich/Ideal/Inverses gebrochenes Ideal/Produkt/Bemerkung

Zu einem gebrochenen Ideal in einem Dedekindbereich nennt man

das zugehörige inverse gebrochene Ideal. Es ist klar, dass dies ein von verschiedener -Untermodul von ist, die endliche Erzeugtheit ist etwas schwieriger zu zeigen. Zunächst beachte man, dass zu zwei gebrochenen Idealen mit der Beziehung mit für die inversen Ideale die Beziehung gilt. Wenn nun durch erzeugt wird, so ist mit und besitzt ein Erzeugendensystem der Form mit . Die Bedingung

impliziert . Daher ist das inverse gebrochene Ideal selbst ein Ideal, also endlich erzeugt.

Für das Produkt ist offenbar

es ist aber nicht unmittelbar klar, dass hier sogar Gleichheit gilt. Dies folgt daraus, dass man die Gleichheit lokal testen kann, die Produktbildung lokal ist und die Lokalisierungen diskrete Bewertungsringe sind.