Dedekindbereich/Satz von Dedekind/Textabschnitt


Es sei ein Dedekindbereich und seien und Ideale in .

Dann gilt genau dann, wenn es ein Ideal mit gibt.

Bei ist eindeutig bestimmt.

Die Implikation „“ gilt in beliebigen kommutativen Ringen. Die andere Implikation ist richtig, wenn ist. Wir können also annehmen, dass die beteiligten Ideale von verschieden sind. Die Bedingung impliziert nach Fakt  (3), dass ist. Somit ist

mit einem effektiven Divisor . Nach Fakt übersetzt sich dies zurück zu , sodass mit die rechte Seite erfüllt ist.


Die folgende Aussage heißt Satz von Dedekind. Sie liefert für jeden Zahlbereich auf der Idealebene einen Ersatz für die eindeutige Primfaktorzerlegung.

DDR-Briefmarke


Es sei ein Dedekindbereich und ein Ideal in .

Dann gibt es eine Produktdarstellung

mit (bis auf die Reihenfolge) eindeutig bestimmten Primidealen aus und eindeutig bestimmten Exponenten , .

Wir benutzen Fakt, also die bijektive Beziehung zwischen Idealen und effektiven Divisoren. Auf der Seite der Divisoren haben wir offenbar eine eindeutige Darstellung

mit geeigneten Primidealen . Wendet man auf diese Darstellung die Abbildung an, so erhält man links das Ideal zurück. Es genügt also zu zeigen, dass der Divisor rechts auf das Ideal abgebildet wird. Dies folgt aber direkt aus Fakt.



Es sei ein Dedekindbereich und , .

Dann gibt es eine Produktdarstellung für das Hauptideal

mit (bis auf die Reihenfolge) eindeutig bestimmten Primidealen aus und eindeutig bestimmten Exponenten , .

Dies folgt direkt aus Fakt.