Durch Betrachten der einzelnen Komponenten von bezüglich einer
Basis
von können wir annehmen, dass
und
ist. Wir wollen den eindimensionalen
Mittelwertsatz der Differentialrechnung
anwenden. Sei
ein fixierter Punkt. Wir betrachten die Abbildung und studieren diese für hinreichend kleine und . Wir fixieren diese
(für den Moment)
und betrachten die differenzierbare Abbildung
-
Nach
dem Mittelwertsatz
gibt es ein
(von und abhängiges)
mit
-
Nun wenden wir erneut
den Mittelwertsatz
auf die differenzierbare Abbildung
-
an, und erhalten die Existenz eines
mit
-
Zusammen erhalten wir
-
Wenden wir denselben Trick in umgekehrter Reihenfolge an, so erhalten wir
und ,
sodass dieser Ausdruck auch gleich
-
ist. Somit schließen wir für
(hinreichend kleine)
gegebene
,
dass positive
und
existieren mit
-
Für und konvergieren auch und gegen . Die Stetigkeit der beiden zweiten Richtungsableitungen impliziert für die Gleichheit
-