Dreieck/Grundseite und Höhe/Minimaler Umfang/Aufgabe/Lösung


Wenn der (neben und ) dritte Eckpunkt des Dreieckes ist, so ist der Umfang gleich

Wir müssen also die Funktion

minimieren. Da positiv ist, ist diese Funktion differenzierbar, und zwar ist

Die Bedingung führt auf

bzw. auf

Quadrieren führt auf

und dies auf

und somit ist

und daher (der Fall ist ausgeschlossen)

und somit

Dies muss ein Minimum sein, da für der Umfang gegen strebt. Der minimale Umfang ist daher