a) Das charakteristische Polynom ist
und die Eigenwerte von sind .
b) Wir bestimmen für jeden Eigenwert einen Eigenvektor.
:
Wir müssen ein nichttriviales Element im Kern von
-
bestimmen. Da gehört dazu.
:
Dies führt auf
-
Wir wählen und und erhalten , also ist
-
ein Eigenvektor zum Eigenwert .
:
Dies führt auf
-
Mit und ist die mittlere Zeile erfüllt. Die erste Zeile wird dann zu
-
und daher ist
-
Somit ist
-
ein Eigenvektor zum Eigenwert
.
c) Bezüglich einer Basis aus Eigenvektoren besitzt die beschreibende Matrix die Gestalt
-