Elementare Mathematik 2/Gemischte Satzabfrage/T2/Aufgabe/Lösung


  1. Es sei eine kommutative Gruppe, eine Untergruppe und die Quotientenmenge zur durch definierten Äquivalenzrelation auf mit der kanonischen Projektion
    Dann gibt es eine eindeutig bestimmte Gruppenstruktur auf derart, dass ein Gruppenhomomorphismus ist.
  2. Es sei ein angeordneter Körper, und es seien und drei Folgen in . Es gelte

    und und

    konvergieren beide gegen den gleichen Grenzwert . Dann konvergiert auch gegen diesen Grenzwert .
  3. Es sei , , eine Intervallschachtelung in . Dann besteht der Durchschnitt
    aus genau einem Punkt .