Endomorphismus/Orthogonale Summe/Adjungiert/Aufgabe
Es sei ein endlichdimensionaler -Vektorraum mit Skalarprodukt und es sei
die direkte Summe der Untervektorräume und . Es seien
und
die Summe davon.
- Die Summenzerlegung sei zusätzlich orthogonal, d.h.
und
stehen senkrecht aufeinander. Zeige
- Zeige, dass die Aussage aus Teil (1) nicht gilt, wenn die Summenzerlegung nicht orthogonal ist.