Exponentialfunktion/Polynomiale Approximation/-5 bis 3/0,001/Aufgabe/Lösung


Wir betrachten zur Exponentialreihe die Teilpolynome

Die Differenz der Exponentialfunktion zu diesen Polynomen ist somit

und der Betrag davon soll für jedes maximal gleich sein. Wegen

müssen wir so wählen, dass

ist. Wir betrachten

Bei liegt rechts eine geometrische Reihe vor, bei ist deren Wert maximal gleich . Bei (bzw. ) können wir grob abschätzen

Wegen ist dies bei kleiner als . Daher ist ein Polynom, das die Exponentialfunktion wie gewünscht approximiert.