Folge/Cauchy-Äquivalenz/Relationseigenschaften/Aufgabe

Wir nennen zwei Folgen und aus Cauchy-äquivalent, wenn die folgende Bedingung erfüllt ist: Zu jedem gibt es ein derart, dass für alle die Abschätzung

gilt. Zeige die folgenden Aussagen.

  1. Die Cauchy-Äquivalenz ist eine symmetrische und transitive Relation auf dem Folgenring .
  2. Die Folge ist eine Cauchy-Folge genau dann, wenn sie zu sich selbst Cauchy-äquivalent ist.
  3. Auf dem Raum aller Cauchy-Folgen ist die Cauchy-Äquivalenz eine Äquivalenzrelation.
  4. Auf dem Raum aller Cauchy-Folgen stimmt die Cauchy-Äquivalenz von zwei Folgen mit der Eigenschaft überein, dass ihre Differenzfolge eine Nullfolge ist.
  5. Wenn eine Cauchy-Folge ist und zu Cauchy-äquivalent ist, so ist auch eine Cauchy-Folge.