Folgen/Summenfolge und Quotient/Konvergenz/Aufgabe/Lösung


  1. Es sei

    und

    für . Dann ist

    Dies konvergiert gegen . Die Differenzfolge

    konvergiert nicht.

  2. Es sei

    und

    Dann ist

    Dies konvergiert nicht. Die Differenzfolge

    konvergiert gegen , da beide Folgen Nullfolgen sind.

  3. Wir schreiben

    wobei nach Voraussetzung eine Nullfolge ist. Damit ist

    Dabei ist

    eine Nullfolge. Somit konvergiert die Quotientenfolge gegen .