Hauptidealbereich/Irreduzibel ist prim/Fakt/Beweis

Beweis

Ein Primelement in einem Integritätsbereich ist nach Fakt stets irreduzibel. Es sei also umgekehrt irreduzibel, und nehmen wir an, dass das Produkt teilt, sagen wir . Nehmen wir an, dass kein Vielfaches von ist. Dann sind aber und teilerfremd, da eine echte Inklusionskette der Irreduzibilität von widerspricht. Damit teilt nach dem Lemma von Euklid den anderen Faktor .