Intervallschachtelung/Aufteilungsvorschrift/3/Aufgabe
Wir beschreiben eine Konstruktion von ineinander enthaltenen Intervallen, und gehen vom Einheitsintervall aus. Das Intervall wird in drei gleichlange Teilintervalle zerlegt und davon nehmen wir das dritte (Regel 1). Das entstehende Intervall teilen wir in fünf gleichlange Teilintervalle ein und davon nehmen wir das vierte (Regel 2). Jetzt wenden wir abwechselnd Regel 1 und Regel 2 an, immer bezogen auf das zuvor konstruierte Intervall. Dabei entsteht eine Folge von Intervallen , ( ist das Einheitsintervall, das als Startintervall dient).
- Bestimme die Intervallgrenzen des Intervalls, das im zweiten Schritt konstruiert wird (also von , nachdem einmal die Regel und einmal die Regel 2 angewendet wurde).
- Wie kann man den Konstruktionsschritt, der durch die einmalige Hintereinanderausführung von Regel 1 und von Regel 2 gegeben ist, mit einer einzigen Regel ausdrücken?
- Bestimme ein Intervall der Form mit , das ganz in enthalten ist.
- Erstelle eine Formel, die die untere Intervallgrenze des Intervalls , , ausdrückt.
- Es gibt genau eine rationale Zahl , die in jedem Intervall enthalten ist. Bestimme als Bruch.
- Gibt es ein Ziffernsystem, in dem die rationale Zahl aus (5) eine Ziffernentwicklung mit Periodenlänge besitzt?