Start
Zufällige Seite
Anmelden
Einstellungen
Spenden
Über Wikiversity
Haftungsausschluss
Suchen
Inverse Matrix/1 3 1 4 1 2 0 1 1/Aufgabe/Lösung
Sprache
Beobachten
Bearbeiten
<
Inverse Matrix/1 3 1 4 1 2 0 1 1/Aufgabe
(
1
3
1
4
1
2
0
1
1
)
{\displaystyle {}{\begin{pmatrix}1&3&1\\4&1&2\\0&1&1\end{pmatrix}}}
(
1
0
0
0
1
0
0
0
1
)
{\displaystyle {}{\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}}}
(
1
3
1
0
−
11
−
2
0
1
1
)
{\displaystyle {}{\begin{pmatrix}1&3&1\\0&-11&-2\\0&1&1\end{pmatrix}}}
(
1
0
0
−
4
1
0
0
0
1
)
{\displaystyle {}{\begin{pmatrix}1&0&0\\-4&1&0\\0&0&1\end{pmatrix}}}
(
1
3
1
0
1
1
0
−
11
−
2
)
{\displaystyle {}{\begin{pmatrix}1&3&1\\0&1&1\\0&-11&-2\end{pmatrix}}}
(
1
0
0
0
0
1
−
4
1
0
)
{\displaystyle {}{\begin{pmatrix}1&0&0\\0&0&1\\-4&1&0\end{pmatrix}}}
(
1
3
1
0
1
1
0
0
9
)
{\displaystyle {}{\begin{pmatrix}1&3&1\\0&1&1\\0&0&9\end{pmatrix}}}
(
1
0
0
0
0
1
−
4
1
11
)
{\displaystyle {}{\begin{pmatrix}1&0&0\\0&0&1\\-4&1&11\end{pmatrix}}}
(
1
3
1
0
1
1
0
0
1
)
{\displaystyle {}{\begin{pmatrix}1&3&1\\0&1&1\\0&0&1\end{pmatrix}}}
(
1
0
0
0
0
1
−
4
9
1
9
11
9
)
{\displaystyle {}{\begin{pmatrix}1&0&0\\0&0&1\\{\frac {-4}{9}}&{\frac {1}{9}}&{\frac {11}{9}}\end{pmatrix}}}
(
1
0
−
2
0
1
1
0
0
1
)
{\displaystyle {}{\begin{pmatrix}1&0&-2\\0&1&1\\0&0&1\end{pmatrix}}}
(
1
0
−
3
0
0
1
−
4
9
1
9
11
9
)
{\displaystyle {}{\begin{pmatrix}1&0&-3\\0&0&1\\{\frac {-4}{9}}&{\frac {1}{9}}&{\frac {11}{9}}\end{pmatrix}}}
(
1
0
0
0
1
0
0
0
1
)
{\displaystyle {}{\begin{pmatrix}1&0&0\\0&1&0\\0&0&1\end{pmatrix}}}
(
1
9
2
9
−
5
9
4
9
−
1
9
−
2
9
−
4
9
1
9
11
9
)
{\displaystyle {}{\begin{pmatrix}{\frac {1}{9}}&{\frac {2}{9}}&{\frac {-5}{9}}\\{\frac {4}{9}}&{\frac {-1}{9}}&{\frac {-2}{9}}\\{\frac {-4}{9}}&{\frac {1}{9}}&{\frac {11}{9}}\end{pmatrix}}}
Die inverse Matrix ist also
(
1
9
2
9
−
5
9
4
9
−
1
9
−
2
9
−
4
9
1
9
11
9
)
.
{\displaystyle {\begin{pmatrix}{\frac {1}{9}}&{\frac {2}{9}}&{\frac {-5}{9}}\\{\frac {4}{9}}&{\frac {-1}{9}}&{\frac {-2}{9}}\\{\frac {-4}{9}}&{\frac {1}{9}}&{\frac {11}{9}}\end{pmatrix}}.}
Zur gelösten Aufgabe