Jordanmatrix/Nilpotent/Kernfolge/Fahne/Aufgabe/Lösung


Die nilpotente -Jordanmatrix hat die Gestalt

Die zugehörige lineare Abbildung ist also durch

gegeben. Die -te Iteration davon bildet somit auf

ab. Daher gehören die zum Kern von . Die Basisvektoren werden hingegen unter auf die linear unabhängigen Vektoren abgebildet. Daher ist der Rang gleich und es ist

mit der Dimension . Die Kerne bilden also eine aufsteigende Kette von Untervektorräumen, wobei die Dimensionen um wachsen. Es liegt also eine Fahne vor.