Körper- und Galoistheorie/Gemischte Satzabfrage/16/Aufgabe/Lösung


  1. Seien und Gruppen, es sei ein Gruppenhomomorphismus und ein surjektiver Gruppenhomomorphismus. Es sei vorausgesetzt, dass
    ist. Dann gibt es einen eindeutig bestimmten Gruppenhomomorphismus
    derart, dass ist.
  2. Es sei ein Polynom. Es sei eine Primzahl mit der Eigenschaft, dass den Leitkoeffizienten nicht teilt, aber alle anderen Koeffizienten teilt, aber dass nicht den konstanten Koeffizienten teilt. Dann ist irreduzibel in .
  3. Es sei eine Kette von Körpererweiterungen. Dann ist