Kommutative Ringtheorie/Monoidringe/Definition

Monoidring

Es sei ein kommutatives (additiv geschriebenes) Monoid und ein kommutativer Ring. Dann wird der Monoidring wie folgt konstruiert. Als -Modul ist

d.h. ist der freie Modul mit Basis , . Die Multiplikation wird auf den Basiselementen durch

definiert und auf ganz distributiv fortgesetzt. Dabei definiert das neutrale Element das neutrale Element der Multiplikation.