Kommutativer Ring/p Elemente/Körper/Aufgabe/Lösung


Es sei , . Wir betrachten die von erzeugte additive Untergruppe von . Wegen handelt es sich nicht um die triviale Gruppe. Da nach dem Satz von Lagrange die Ordnung jeder Untergruppe die Gruppenordnung teilt und diese eine Primzahl ist, erzeugt schon ganz . Es gibt also insbesondere eine natürliche Zahl mit

Da jeder Ring die natürlichen Zahlen enthält, bedeutet dies, dass eine Einheit ist.