Komplexe Potenzreihe/Konvergenzradius/Cauchy-Hadamard/Fakt/Beweis

Beweis

Es sei die Zahl aus aus der Satzformulierung und sei der Konvergenzradius. Es sei . Es ist dann

und damit ist für alle ab einem gewissen . Dann kann man auf wegen

das Wurzelkriterium anwenden und erhält die absolute Konvergenz von . Da beliebig nah an ist, folgt .

Es sei nun . Dann gibt es unendlich viele Koeffizienten , , mit

bzw.

Daher kann nicht konvergieren, da die Reihenglieder keine Nullfolge bilden. Somit ist auch .