Betrachte auf die
Relation
-
a) Zeige, dass eine
Äquivalenzrelation
ist.
b) Zeige, dass es zu jedem ein äquivalentes Paar mit
gibt.
c) Es sei die Menge der
Äquivalenzklassen
dieser Äquivalenzrelation. Wir definieren eine Abbildung
-
Zeige, dass
injektiv
ist.
d) Definiere auf
(aus Teil c)
eine
Verknüpfung
derart, dass
mit dieser Verknüpfung und mit als neutralem Element eine
Gruppe
wird, und dass für die Abbildung die Beziehung
-
für alle
gilt.