Kurs:Analysis (Osnabrück 2013-2015)/Teil II/2/Klausur mit Lösungen


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12
Punkte 4 4 6 4 8 9 4 4 10 5 2 4 64




Aufgabe (4 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Eine Isometrie

    zwischen euklidischen Vektorräumen.

  2. Der Grenzwert einer Abbildung

    in , wobei metrische Räume sind, eine Teilmenge und ein Berührpunkt von ist.

  3. Ein wegzusammenhängender metrischer Raum .
  4. Die Differenzierbarkeit einer Funktion

    in einem Punkt , wobei ein Intervall und ein endlichdimensionaler reeller Vektorraum ist.

  5. Ein (zeitabhängiges) Vektorfeld auf einer offenen Menge .
  6. Eine Differentialgleichung höherer Ordnung (in einer Variablen).
  7. Die Richtungsableitung einer Abbildung

    in Richtung , wobei endlichdimensionale reelle Vektorräume sind mit offen und .

  8. Eine Bilinearform auf einem -Vektorraum .


Lösung

  1. Die Abbildung heißt eine Isometrie, wenn für alle gilt:
  2. Das Element heißt Grenzwert von in , wenn es für jedes ein gibt mit der folgenden Eigenschaft: Für jedes ist .
  3. Der Raum heißt wegzusammenhängend, wenn er nicht leer ist und es zu je zwei Punkten eine stetige Abbildung

    mit und gibt.

  4. Die Abbildung heißt in differenzierbar, wenn der Limes

    existiert.

  5. Ein Vektorfeld ist eine Abbildung

    wobei ein reelles Intervall ist.

  6. Es sei ein offenes Intervall, offen und

    eine Funktion. Dann nennt man den Ausdruck

    eine Differentialgleichung der Ordnung .

  7. Die Abbildung heißt differenzierbar in Richtung , falls in jedem Punkt in Richtung differenzierbar ist. In diesem Fall heißt die Abbildung

    die Richtungsableitung von in Richtung .

  8. Eine Abbildung

    heißt Bilinearform, wenn für alle die induzierten Abbildungen

    und für alle die induzierten Abbildungen

    -linear sind.


Aufgabe (4 Punkte)

Formuliere die folgenden Sätze.

  1. Das Folgenkriterium für die Stetigkeit in einem Punkt zu einer Abbildung

    zwischen metrischen Räumen

    und .
  2. Der Fundamentalsatz der Algebra.
  3. Der Satz über den Zusammenhang zwischen partieller Ableitung und Richtungsableitung.
  4. Das Ableitungskriterium für die Lipschitz-Eigenschaft eines Vektorfeldes


Lösung

  1. Die Abbildung ist genau dann im Punkt stetig, wenn für jede konvergente Folge in mit auch die Bildfolge konvergent mit dem Grenzwert ist.
  2. Jedes nichtkonstante Polynom über den komplexen Zahlen besitzt eine Nullstelle.
  3. Sei offen, ein Punkt und sei

    eine Abbildung. Dann ist in genau dann partiell differenzierbar, wenn die Richtungsableitungen

    von sämtlichen Komponentenfunktionen in in Richtung eines jeden Standardvektors existieren.
  4. Es sei ein reelles offenes Intervall, eine offene Menge und

    ein Vektorfeld auf derart, dass die partiellen Ableitungen nach existieren und stetig sind. Dann genügt

    lokal einer Lipschitz-Bedingung.


Aufgabe (6 Punkte)

Es sei eine Folge in einem metrischen Raum . Es sei die Menge aller Häufungspunkte der Folge und

Zeige, dass eine abgeschlossene Teilmenge von ist.


Lösung

Wir zeigen, dass das Komplement offen ist. Sei dazu ein Punkt , , gegeben. D.h. dass weder ein Folgenglied noch ein Häufungspunkt der Folge ist. Da kein Häufungpunkt ist bedeutet, dass es ein derart gibt, dass es in nur endlich viele Folgenglieder gibt. Diese Folgenglieder seien

Da selbst kein Folgenglied ist, ist für alle . Daher ist für alle und somit

Damit ist eine offene Umgebung von , die keine Folgenglieder enthält. Dies gilt dann erst recht für . Diese Menge enthält aber auch keinen Häufungspunkt der Folge. Wäre nämlich , so würde es in unendlich viele Folgenglieder geben, was wegen

ein Widerspruch ist. Daher haben wir eine offene Umgebung von gefunden, die zu disjunkt ist.


Aufgabe (4 Punkte)

Die folgende Tabelle zeigt eine Auswahl der Gastgeberländer und der Weltmeister der Fußballweltmeisterschaften von 1970 bis 2014.

Jahr Gastgeber Weltmeister

Es sei die Menge der Gastgeberländer und

die Abbildung, die dem Gastgeberland den Weltmeister zuordnet. Gibt es auf eine Metrik derart, dass zu einem vollständigen metrischen Raum wird und dass eine starke Kontraktion ist?


Lösung

Wir platzieren die Manschaften auf die reelle Gerade mit den Positionen

Südafrika -6

Spanien -3

Italien -1

Deutschland 0

Brasilien 1

Mexiko 2,5

USA 3

Japan 3,5.

Durch die induzierte reelle Metrik liegt ein metrischer Raum vor. Da er endlich ist, ist er vollständig. Die angegebene Abbildung verschiebt die oberen drei Mannschaften um eine Position nach unten, die untersten drei Mannschaften auf Brasilien nach oben, Brasilien auf Deutschland und Deutschland auf sich. Dies ist eine starke Kontraktion: Für zwei obere Mannschaften ist der Abstand der Bildpunkte nach Wahl der Positionen kleiner als der Ausgangsabstand. Zu einer Mannschaften von oben und einer von unten wird der Abstand der Bildpunkte auch kleiner, da sie sich aufeinander zubewegen. Je zwei der drei untersten werden durch die Abbildung vereinigt, ihr Abstand wird also , und eine dieser Mannschaften hat zu Brasilien mindestens den Abstand , während der Bildabstand zu wird.


Aufgabe (8 (5+3) Punkte)

a) Bestimme den Lösungsraum des linearen Differentialgleichungssystems

b) Löse das Anfangswertproblem

mit der Anfangsbedingung .


Lösung

a) Wir berechnen die Eigenwerte der Matrix. Das charakteristische Polynom davon ist

Daher sind und die Eigenwerte, und daher ist die Matrix diagonalisierbar.

Zur Bestimmung eines Eigenvektors zum Eigenwert berechnen wir den Kern von

Dies ergibt den Eigenvektor zum Eigenwert und damit die erste Fundamentallösung

Zur Bestimmung eines Eigenvektors zum Eigenwert berechnen wir den Kern von

Dies ergibt den Eigenvektor zum Eigenwert und damit die zweite Fundamentallösung

Die allgemeine Lösung hat demnach die Form

mit .

b) Um das Anfangsproblem zu lösen müssen wir und so bestimmen, dass

ist. Die zweite Gleichung bedeutet . Wir addieren das -fache der ersten Zeile zu dazu und erhalten

woraus sich

und somit

ergibt. Daher ist

Die Lösung des Anfangswertproblems ist also


Aufgabe (9 Punkte)

Beweise die Kettenregel für total differenzierbare Abbildungen und , wobei endlichdimensionale -Vektorräume sind.


Lösung

Wir haben nach Voraussetzung (wobei wir setzen)

und

mit linearen Abbildungen und , und mit in stetigen Funktionen und , die beide in den Wert annehmen. Damit gilt

Dabei haben wir in der dritten Gleichung die lineare Approximation für

eingesetzt. Die beiden letzten Gleichungen gelten nur für . Der Ausdruck

ist unser Kandidat für die Abweichungsfunktion. Der erste Summand ist in stetig und hat dort auch den Wert . Es genügt also den zweiten Summanden zu betrachten. Der -Ausdruck ist in einer Umgebung der Null beschränkt, da auf der kompakten Einheitssphäre nach Satz 36.11 beschränkt ist und da in stetig ist. Daher hängt die Stetigkeit nur von dem rechten Faktor ab. Aber hat für den Grenzwert . Damit ist auch in stetig und hat dort den Grenzwert .


Aufgabe (4 Punkte)

Bestimme das Taylor-Polynom zweiter Ordnung der Funktion

im Punkt .


Lösung

Die relevanten Ableitungen sind

Somit sind die Werte der relevanten Ableitungen im Punkt gleich

Daher ist das Taylor-Polynom der Ordnung zwei gleich


Aufgabe (4 Punkte)

Bestimme die kritischen Punkte der Funktion

und entscheide, ob in diesen kritischen Punkten ein lokales Extremum vorliegt.


Lösung

Die Jacobi-Matrix dieser Funktion ist

Wir setzen beide Komponenten gleich und erhalten durch Subtraktion der beiden Gleichungen voneinander die Bedingung

also ist

Der einzige kritische Punkt der Funktion ist also

Wir bestimmen die Hesse-Matrix in diesem Punkt. Sie ist

Wir wenden das Minorenkriterium an. Der Eintrag links oben ist positiv, die Determinante ist , also negativ. Daher besitzt die Hesse-Form den Typ , und somit liegt kein lokales Extremum vor.


Aufgabe (10 Punkte)

Bestimme die lokalen und globalen Extrema der auf der abgeschlossenen Kreisscheibe definierten Funktion


Lösung

Wir bestimmen zunächst lokale Extrema auf dem offenen Innern der Kreisscheibe, indem wir die Funktion auf kritische Punkte untersuchen. Die Jacobi-Matrix von ist

Die kritischen Punkte liegen also bei und vor. Für die Gleichung sind und die Lösungen, wobei der Punkt nicht zum Innern (aber zum Rand) gehört, der Punkt aber schon. Für bestimmen wir die Hesse-Matrix, diese ist allgemein

so dass sich für die Hesse-Matrix

ergibt. Diese hat den Typ , so dass diese Matrix indefinit ist und kein lokales Extremum vorliegt. Daher liegen sämtliche lokalen und globalen Extrema auf dem Rand.

Die Funktion lässt sich auf ganz in natürlicher Weise ausdehnen (durch dieselben polynomialen Ausdrücke). Für den kritischen Punkt ist die Hesse-Matrix gleich

welche positiv definit ist. Daher liegt in ein lokales Minimum der ausgedehnten Funktion und damit erst recht ein lokales Minimum der auf der abgeschlossenen Kreisscheibe definierten Funktion vor.

Wir untersuchen nun den Rand auf weitere Extrema. Da die Funktion auf einer abgeschlossenen und beschränkten Menge definiert und stetig ist, muss es sowohl ein globales Minimum als auch ein globales Maximum geben. Der Rand ist durch

gegeben. Daher gilt dort und somit hängt die Funktion auf dem Rand nur von ab, man kann daher

ansetzen, wobei zwischen und läuft. Da ein lokales Extremum auf der abgeschlossenen Kreisscheibe insbesondere ein lokales Extremum auf dem Rand sein muss, müssen wir zunächst die Nullstellen der Ableitung von bestimmen. Diese ist , und die Nullstellen davon sind

Dabei ist

außerhalb des Intervalls, also nicht relevant für die Aufgabenstellung. Dagegen ist

zwischen und . Da die zweite Ableitung in diesem Punkt negativ ist, liegt dort ein lokales Maximum auf dem Rand vor. Weiterhin sind noch die Randpunkte und des Intervalls zu berücksichtigen, dort müssen jeweils lokale Minima für vorliegen.

Wir müssen dies jetzt auf die ursprüngliche Funktion auf der Kreisscheibe zurückübersetzen. Wir wissen schon, dass in ein lokales Minimum vorliegt, und zwar mit dem Wert

Sei . Der Wert an dieser Stelle ist ebenfalls . Da diese beiden Punkte die einzigen Kandidaten für lokale Minima sind, müssen beide Punkte globale Minima sein.

Wir berechnen die -Koordinaten zu . Es ist

also

und somit

Die beiden Punkte und sind die einzigen Kandidaten für lokale Maxima. Da es ein globales Maximum geben muss, und die Situation für diese beiden Punkte symmetrisch ist, muss in beiden Punkten ein globales Maximum vorliegen.


Aufgabe (5 (2+1+2) Punkte)

Wir betrachten die Abbildung

a) Bestimme die Jacobi-Matrix zu dieser Abbildung.

b) Zeige, dass im Nullpunkt nicht regulär ist.

c) Zeige, dass in regulär ist.


Lösung

a) Die Jacobi-Matrix ist

b) Die Jacobi-Matrix im Nullpunkt ist

Diese Matrix hat den Rang , so dass der Nullpunkt nicht regulär ist.

c) Die Jacobi-Matrix in ist

Die Determinante der vorderen -Untermatrix ist , so dass die ersten vier Spaltenvektoren linear unabhängig sind und daher der Rang der Matrix gleich ist. Daher handelt es sich um einen regulären Punkt.


Aufgabe (2 (1+1) Punkte)

Es sei

eine Funktion.

a) Realisiere den Graphen von als Faser zu einer Abbildung

über .

b) Sei stetig differenzierbar. Zeige, dass die Punkte auf dem Graphen von regulär sind.


Lösung

a) Sei . Dann ist genau dann, wenn , d.h. wenn ein Punkt des Graphen ist.

b) Wenn stetig differenzierbar ist, so ist stetig differenzierbar mit der Jacobi-Matrix . Diese beschreibt eine surjektive lineare Abbildung in jedem Punkt, also ist in jedem Punkt regulär.


Aufgabe (4 (2+2) Punkte)

Wir betrachten das Vektorfeld

a) Zeige mit Hilfe der Integrabilitätsbedingung, dass ein Gradientenfeld ist.

b) Bestimme ein Potential zu .


Lösung

a) Es ist

und ebenso

es ist

und ebenso

und schließlich ist

und ebenso

die Integrabilitätsbedingungen sind also erfüllt. Da sternförmig ist, handelt es sich um ein Gradientenfeld.

b) Ein Potential zu ist

wie man durch Ableiten bestätigt.