Kurs:Analysis (Osnabrück 2013-2015)/Teil II/3/Klausur


Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Punkte 4 4 9 2 6 2 4 3 1 4 3 8 9 5 64



Aufgabe * (4 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

  1. Die offene Kugel mit Mittelpunkt und Radius in einem metrischen Raum .
  2. Die Eigenschaft zweier metrischer Räume und , zueinander homöomorph zu sein.
  3. Der Abschluss einer Teilmenge in einem metrischen Raum .
  4. Eine Lösung zu einer gewöhnlichen Differentialgleichung , wobei

    ein Vektorfeld auf einem endlichdimensionalen reellen Vektorraum ist (und ein Intervall und eine offene Teilmenge ist).

  5. Eine höhere Richtungsableitung zu einer Abbildung

    wobei endlichdimensionale -Vektorräume sind, bezüglich der Richtungen .

  6. Die Hesse-Form zu einer zweimal stetig differenzierbaren Funktion

    in einem Punkt .

  7. Den Tangentialraum an die Faser einer stetig differenzierbare Abbildung

    zwischen endlichdimensionalen -Vektorräumen durch einen Punkt , in dem das totale Differential surjektiv ist.

  8. Die gleichmäßige Konvergenz einer Abbildungsfolge

    wobei eine Menge und ein metrischer Raum ist.


Aufgabe * (4 Punkte)

Formuliere die folgenden Sätze.

  1. Die Charakterisierung von stetigen Abbildungen

    zwischen metrischen Räumen und

    mit Folgen und mit offenen Mengen.
  2. Der Satz über die Unabhängigkeit der Topologie auf einem reellen endlichdimensionalen Vektorraum.
  3. Der Satz über die totale Differenzierbarkeit bei partieller Differenzierbarkeit.
  4. Der Satz über das Wegintegral in einem Gradientenfeld.


Aufgabe * (9 Punkte)

Es sei

eine stetige, streng fallende, bijektive Funktion mit der ebenfalls stetigen Umkehrfunktion

Es sei vorausgesetzt, dass das uneigentliche Integral existiert. Zeige, dass dann auch das uneigentliche Integral existiert und dass der Wert dieser beiden Integrale übereinstimmt.


Aufgabe * (2 Punkte)

Es sei eine Folge in einem metrischen Raum . Zeige, dass die Folge genau dann gegen konvergiert, wenn in jeder offenen Menge mit alle bis auf endlich viele Folgenglieder liegen.


Aufgabe * (6 (3+3) Punkte)

Es seien und Teilmengen und ihre Produktmenge.

a) Zeige, dass wenn und beschränkt sind, dass dann auch beschränkt ist.

b) Zeige, dass wenn und kompakt sind, dass dann auch kompakt ist.


Aufgabe * (2 Punkte)

Es sei ein nichtkonstantes Polynom. Zeige, dass die Abbildung

surjektiv ist.


Aufgabe * (4 Punkte)

Es sei

ein stetiges Vektorfeld, wobei die -te Komponente nur von der -ten Variabeln abhängen möge. Es sei

ein stetig differenzierbarer Weg. Zeige, dass das Wegintegral nur von und abhängt.


Aufgabe * (3 (1+2) Punkte)

a) Zeige, dass die archimedischen Spiralen

(zu fixierten ) Lösungskurven für die Differentialgleichung (bei )

sind.

b) Man gebe eine Lösung für das Anfangswertproblem

zu dieser Differentialgleichung an.


Aufgabe (1 Punkt)

Skizziere die Funktion


Aufgabe * (4 Punkte)

Man gebe ein Beispiel für eine Funktion

die im Nullpunkt partiell differenzierbar ist und dort die Eigenschaft besitzt, dass die Richtungsableitung in keine Richtung mit existiert.


Aufgabe * (3 Punkte)

Begründe ohne Differentialrechnung, dass die Funktion

kein lokales Extremum besitzt.


Aufgabe * (8 (2+2+4) Punkte)

Es sei

, und .

a) Berechne die Hesse-Matrix von im Punkt .

b) Bestimme mit a) die zweite Richtungsableitung .

c) Bestimme direkt die zweite Richtungsableitung .


Aufgabe * (9 (5+4) Punkte)

Es seien zwei komplexe (bzw. reelle) Polynome und

die zugehörige Abbildung. Die Determinante der Jacobi-Matrix zu sei in jedem Punkt von verschieden.

  1. Zeige, dass bei die Determinante konstant ist.
  2. Zeige durch ein Beispiel, dass bei die Determinante nicht konstant sein muss.


Aufgabe * (5 (1+1+1+2) Punkte)

Betrachte die Abbildung

a) Erstelle die Jacobi-Matrix von .

b) Bestimme die regulären Punkte von .

c) Zeige, dass die Bedingung

erfüllt.

d) Zeige, dass die Abbildung injektiv ist.