Kurs:Einführung in die mathematische Logik (Osnabrück 2014)/Arbeitsblatt 22/kontrolle



Übungsaufgaben

Zeige, dass eine widersprüchliche Ausdrucksmenge Repräsentierungen erlaubt.



Es sei eine Ausdrucksmenge, die Repräsentierungen erlaube. Zeige, dass jede größere Ausdrucksmenge ebenfalls Repräsentierungen erlaubt.



Es sei eine widerspruchsfreie und - entscheidbare Ausdrucksmenge.

a) Zeige, dass jede in repräsentierbare Relation - entscheidbar ist.

b) Zeige, dass jede in repräsentierbare Abbildung

- berechenbar ist.



Aufgabe * Aufgabe 22.4 ändern

Zeige, dass in der erststufigen Peano-Arithmetik die Addition von natürlichen Zahlen repräsentierbar ist.



Es sei eine arithmetische Ausdrucksmenge ohne freie Variablen und eine Relation. Es seien Ausdrücke in einer freien Variablen . Zeige, dass aus

folgt, dass in die Relation genau dann repräsentiert, wenn in die Relation repräsentiert.



Es sei eine arithmetische Ausdrucksmenge und eine Relation. Es seien Ausdrücke in einer freien Variablen . Zeige, dass aus

nicht folgt, dass in die Relation genau dann repräsentiert, wenn in die Relation repräsentiert.



<< | Kurs:Einführung in die mathematische Logik (Osnabrück 2014) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)