%Daten zur Institution

%\input{Dozentdaten}

%\renewcommand{\fachbereich}{Fachbereich}

%\renewcommand{\dozent}{Prof. Dr. . }

%Klausurdaten

\renewcommand{\klausurgebiet}{ }

\renewcommand{\klausurtyp}{ }

\renewcommand{\klausurdatum}{. 20}

\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}

%Daten für folgende Punktetabelle


\renewcommand{\aeins}{ 3 }

\renewcommand{\azwei}{ 3 }

\renewcommand{\adrei}{ 2 }

\renewcommand{\avier}{ 3 }

\renewcommand{\afuenf}{ 5 }

\renewcommand{\asechs}{ 6 }

\renewcommand{\asieben}{ 3 }

\renewcommand{\aacht}{ 4 }

\renewcommand{\aneun}{ 12 }

\renewcommand{\azehn}{ 4 }

\renewcommand{\aelf}{ 4 }

\renewcommand{\azwoelf}{ 3 }

\renewcommand{\adreizehn}{ 8 }

\renewcommand{\avierzehn}{ 4 }

\renewcommand{\afuenfzehn}{ 64 }

\renewcommand{\asechzehn}{ }

\renewcommand{\asiebzehn}{ }

\renewcommand{\aachtzehn}{ }

\renewcommand{\aneunzehn}{ }

\renewcommand{\azwanzig}{ }

\renewcommand{\aeinundzwanzig}{ }

\renewcommand{\azweiundzwanzig}{ }

\renewcommand{\adreiundzwanzig}{ }

\renewcommand{\avierundzwanzig}{ }

\renewcommand{\afuenfundzwanzig}{ }

\renewcommand{\asechsundzwanzig}{ }

\punktetabellevierzehn

\klausurnote

\newpage


\setcounter{section}{0}




\inputaufgabegibtloesung
{3}
{

Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Die \stichwort {Ordnung} {} eines Elementes
\mavergleichskette
{\vergleichskette
{ g }
{ \in }{ G }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} in einer \definitionsverweis {Gruppe}{}{} $G$.

}{Ein \stichwort {Nichtnullteiler} {} $a$ in einem \definitionsverweis {kommutativen Ring}{}{} $R$.

}{Ein \stichwort {Körper} {} $K$.

}{Die \stichwort {eulersche Funktion} {}
\mathl{\varphi(n)}{} zu
\mavergleichskette
{\vergleichskette
{ n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}{Der \stichwort {Zerfällungskörper} {} zu einem Polynom
\mathl{F \in K[X]}{} über einem Körper $K$.

}{Eine \stichwort {konstruierbare} {} Zahl
\mathl{z \in {\mathbb C}}{.} }

}
{} {}




\inputaufgabegibtloesung
{3}
{

Formuliere die folgenden Sätze. \aufzaehlungdrei{Der \stichwort {Fundamentalsatz der Algebra} {.}}{Der Satz über die Faktorzerlegung im Quotientenkörper
\mathl{K=Q(R)}{} zu einem faktoriellen Bereich $R$.}{Der Satz über die Winkeldreiteilung.}

}
{} {}




\inputaufgabegibtloesung
{2}
{

Finde zwei natürliche Zahlen, deren Summe
\mathl{65}{} und deren Produkt $1000$ ist.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Bestimme in $\Z$ mit Hilfe des euklidischen Algorithmus den \definitionsverweis {größten gemeinsamen Teiler}{}{} von $10868$ und $9243$.

}
{} {}




\inputaufgabegibtloesung
{5}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} und
\mathl{K[X]}{} der Polynomring über $K$. Zeige unter Verwendung der Division mit Rest, dass $K[X]$ ein \definitionsverweis {Hauptidealbereich}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{6}
{

Beweise den Homomorphiesatz für Gruppen.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Man gebe zu jedem
\mavergleichskette
{\vergleichskette
{ n }
{ \geq }{ 2 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} einen \definitionsverweis {kommutativen Ring}{}{} $R$ und ein Element
\mathbed {x \in R} {}
{x \neq 0} {}
{} {} {} {,} an, für das \mathkor {} {nx=0} {und} {x^n =0} {} gilt.

}
{} {}




\inputaufgabegibtloesung
{4 (1+3)}
{

a) Finde die Zahlen
\mathl{z \in \{0,1 , \ldots , 9 \}}{} mit der Eigenschaft, dass die letzte Ziffer ihres Quadrates \zusatzklammer {in der Dezimaldarstellung} {} {} gleich $z$ ist.

b) Finde die Zahlen
\mathl{z \in \{0,1 , \ldots , 99 \}}{} mit der Eigenschaft, dass die beiden letzten Ziffern ihres Quadrates \zusatzklammer {in der Dezimaldarstellung} {} {} gleich $z$ ist.

}
{} {}




\inputaufgabegibtloesung
{12 (3+5+3+1)}
{

Es seien
\mathl{R_1, R_2 , \ldots , R_n}{} \definitionsverweis {kommutative Ringe}{}{} und sei
\mavergleichskettedisp
{\vergleichskette
{R }
{ =} { R_1 \times R_2 \times \cdots \times R_n }
{ } { }
{ } { }
{ } { }
} {}{}{} der \definitionsverweis {Produktring}{}{.} \aufzaehlungvier{Es seien
\mathdisp {I_1 \subseteq R_1, I_2 \subseteq R_2 , \ldots , I_n \subseteq R_n} { }
\definitionsverweis {Ideale}{}{.} Zeige, dass die Produktmenge
\mathdisp {I_1 \times I_2 \times \cdots \times I_n} { }
ein Ideal in $R$ ist. }{Zeige, dass jedes Ideal
\mathl{I \subseteq R}{} die Form
\mavergleichskettedisp
{\vergleichskette
{I }
{ =} { I_1 \times I_2 \times \cdots \times I_n }
{ } { }
{ } { }
{ } { }
} {}{}{} mit Idealen
\mavergleichskette
{\vergleichskette
{ I_j }
{ \subseteq }{ R_j }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} besitzt. }{Es sei
\mavergleichskettedisp
{\vergleichskette
{I }
{ =} { I_1 \times I_2 \times \cdots \times I_n }
{ } { }
{ } { }
{ } { }
} {}{}{} ein Ideal in $R$. Zeige, dass $I$ genau dann ein Hauptideal ist, wenn sämtliche $I_j$ Hauptideale sind. }{Zeige, dass $R$ genau dann ein \definitionsverweis {Hauptidealring}{}{} ist, wenn alle $R_j$ Hauptidealringe sind. }

}
{} {}




\inputaufgabegibtloesung
{4 (1+3)}
{


a) Zeige, dass
\mathl{X^3+X^2+2}{} \definitionsverweis {irreduzibel}{}{} in $\Z/(3) [X]$ ist.


b) Bestimme die \definitionsverweis {Partialbruchzerlegung}{}{} von
\mathdisp {{ \frac{ X^4 }{ { \left( X^3+X^2+2 \right) }^2 } }} { }
in
\mathl{\Z/(3) (X)}{.}

}
{} {}




\inputaufgabegibtloesung
{4}
{

Bestimme in $\Q[ { \mathrm i} ]$ das multiplikative Inverse von
\mathdisp {\frac{3}{7} + \frac{2}{5} { \mathrm i}} { . }
Die Antwort muss in der Form $p+q { \mathrm i}$ mit
\mavergleichskette
{\vergleichskette
{ p,q }
{ \in }{ \Q }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} in gekürzter Form sein.

}
{} {}




\inputaufgabegibtloesung
{3}
{

Beweise den Satz, dass das Minimalpolynom zu einem algebraischen Element
\mavergleichskette
{\vergleichskette
{ f }
{ \in }{ L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} in einer Körpererweiterung
\mavergleichskette
{\vergleichskette
{K }
{ \subseteq }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} irreduzibel ist.

}
{} {}




\inputaufgabegibtloesung
{8 (3+5)}
{

Es seien
\mavergleichskette
{\vergleichskette
{ p,q }
{ \in }{ \Q_{\geq 0} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und sei
\mavergleichskettedisp
{\vergleichskette
{f }
{ =} { \sqrt{p} + \sqrt{q} }
{ } { }
{ } { }
{ } { }
} {}{}{.}

a) Zeige, dass es ein Polynom
\mavergleichskette
{\vergleichskette
{ Q }
{ \in }{ \Q[X] }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} der Form
\mavergleichskettedisp
{\vergleichskette
{G }
{ =} { X^4 + c X^2 + d }
{ } { }
{ } { }
{ } { }
} {}{}{} mit
\mavergleichskette
{\vergleichskette
{ G(f) }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} gibt.


b) Es seien nun zusätzlich \mathkor {} {p} {und} {q} {} verschiedene Primzahlen. Zeige, dass das Polynom $G$ aus Teil a) das Minimalpolynom zu $f$ ist.

}
{} {}




\inputaufgabegibtloesung
{4}
{

Zeige, dass zu zwei konstruierbaren positiven reellen Zahlen \mathkor {} {a} {und} {b} {} die Potenz
\mathl{a^b}{} nicht konstruierbar sein muss.

}
{} {}