Kurs:Elementare Algebra/T1/Klausur/latex
%Daten zur Institution
%\input{Dozentdaten}
%\renewcommand{\fachbereich}{Fachbereich}
%\renewcommand{\dozent}{Prof. Dr. . }
%Klausurdaten
\renewcommand{\klausurgebiet}{ }
\renewcommand{\klausurtyp}{ }
\renewcommand{\klausurdatum}{ . 20}
\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}
%Daten für folgende Punktetabelle
\renewcommand{\aeins}{ 4 }
\renewcommand{\azwei}{ 4 }
\renewcommand{\adrei}{ 3 }
\renewcommand{\avier}{ 3 }
\renewcommand{\afuenf}{ 4 }
\renewcommand{\asechs}{ 3 }
\renewcommand{\asieben}{ 2 }
\renewcommand{\aacht}{ 4 }
\renewcommand{\aneun}{ 2 }
\renewcommand{\azehn}{ 5 }
\renewcommand{\aelf}{ 4 }
\renewcommand{\azwoelf}{ 2 }
\renewcommand{\adreizehn}{ 4 }
\renewcommand{\avierzehn}{ 4 }
\renewcommand{\afuenfzehn}{ 2 }
\renewcommand{\asechzehn}{ 3 }
\renewcommand{\asiebzehn}{ 12 }
\renewcommand{\aachtzehn}{ 65 }
\renewcommand{\aneunzehn}{ }
\renewcommand{\azwanzig}{ }
\renewcommand{\aeinundzwanzig}{ }
\renewcommand{\azweiundzwanzig}{ }
\renewcommand{\adreiundzwanzig}{ }
\renewcommand{\avierundzwanzig}{ }
\renewcommand{\afuenfundzwanzig}{ }
\renewcommand{\asechsundzwanzig}{ }
\punktetabellesiebzehn
\klausurnote
\newpage
\setcounter{section}{0}
\inputaufgabegibtloesung
{4}
{
Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungacht{Eine \stichwort {Gruppe} {} $G$.
}{Der \stichwort {Binomialkoeffizient} {}
\mathl{\binom { n } { k }}{.}
}{Ein \stichwort {Nichtnullteiler} {} $a$ in einem \definitionsverweis {kommutativen Ring}{}{} $R$.
}{Ein \stichwort {Körper} {} $K$.
}{Die \stichwort {komplexe Konjugation} {.}
}{Ein
\stichwort {Primelement} {}
\mathl{p \in R, \, p \neq 0}{,} in einem
\definitionsverweis {kommutativen Ring}{}{}
$R$.
}{Ein
\stichwort {Ideal} {}
\mathl{{\mathfrak a} \subseteq R}{} in einem
\definitionsverweis {kommutativen Ring}{}{}
$R$.
}{Ein \stichwort {Ringhomomorphismus} {} \maabbdisp {\varphi} {R} {S } {} zwischen \definitionsverweis {Ringen}{}{} \mathkor {} {R} {und} {S} {.} }
}
{} {}
\inputaufgabegibtloesung
{4}
{
Formuliere die folgenden Sätze.
\aufzaehlungvier{Die \stichwort {allgemeine binomische Formel} {} für
\mathl{(a+b)^n}{} für Elemente
\mathl{a,b \in R}{} in einem
\definitionsverweis {kommutativen Ring}{}{}
$R$.}{Der
\stichwort {Fundamentalsatz der Algebra} {.}}{Das
\stichwort {Lemma von Euklid} {}
für einen Hauptidealbereich.}{Der
\stichwort {Homomorphiesatz} {}
für Ringhomomorphismen.}
}
{} {}
\inputaufgabegibtloesung
{3}
{
Es sei $R$ ein
\definitionsverweis {kommutativer Ring}{}{} und
\mavergleichskette
{\vergleichskette
{ f
}
{ \in }{ R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Charakterisiere mit Hilfe der Multiplikationsabbildung
\maabbeledisp {\mu_f} {R} {R
} {g} {fg
} {,}
wann $f$ ein
\definitionsverweis {Nichtnullteiler}{}{}
und wann $f$ eine
\definitionsverweis {Einheit}{}{}
ist.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Es sei $R$ ein \definitionsverweis {Integritätsbereich}{}{} und $R[X]$ der \definitionsverweis {Polynomring}{}{} über $R$. Zeige, dass die \definitionsverweis {Einheiten}{}{} von $R[X]$ genau die Einheiten von $R$ sind.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Zeige, dass für jede ungerade Zahl $n$ die Zahl
\mathl{25n^2-17}{} ein Vielfaches von $8$ ist.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Zeige durch Induktion, dass jede natürliche Zahl
\mavergleichskette
{\vergleichskette
{n
}
{ \geq }{2
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
eine Zerlegung in
\definitionsverweis {Primzahlen}{}{}
besitzt.
}
{} {}
\inputaufgabegibtloesung
{2 (1+1)}
{
a) Berechne den \definitionsverweis {größten gemeinsamen Teiler}{}{} der ganzen Zahlen \mathkor {} {2 \cdot 3^2 \cdot 7^4} {und} {2^4 \cdot 3^3 \cdot 5^{11} \cdot 7} {.}
b) Berechne den \definitionsverweis {größten gemeinsamen Teiler}{}{} der ganzen Zahlen \mathkor {} {2 \cdot 3^2 \cdot 6 \cdot 7} {und} {2^2 \cdot 3^3 \cdot 5^{4}} {.}
}
{} {}
\inputaufgabegibtloesung
{4}
{
Finde im
\definitionsverweis {Polynomring}{}{}
\mathl{\Z/(2)[X]}{} ein
\definitionsverweis {irreduzibles Polynom}{}{}
vom
\definitionsverweis {Grad}{}{}
vier.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Es seien
\mathl{x,y \in R}{} Elemente in einem
\definitionsverweis {kommutativen Ring}{}{}
$R$. Welche der folgenden Formulierungen sind zu
\mavergleichskettedisp
{\vergleichskette
{Rx
}
{ \subseteq} {Ry
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
äquivalent.
\aufzaehlungzweireihe {\itemfuenf {$x$ teilt $y$.
}{$x$ wird von $y$ geteilt.
}{$y$ wird von $x$ geteilt.
}{$x$ ist ein Vielfaches von $y$.
}{$x$ ist ein Vielfaches von $x$.
} } {\itemfuenf {$y$ teilt $x$.
}{$Rx \cap Ry = Rx$.
}{Jedes Vielfache von $y$ ist auch ein Vielfaches von $x$.
}{Jeder Teiler von $y$ ist auch ein Teiler von $x$.
}{Ein Maikäfer ist ein Schmetterling.
} }
}
{} {}
\inputaufgabegibtloesung
{5}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{}
und
\mathl{K[X]}{} der Polynomring über $K$. Zeige unter Verwendung der Division mit Rest, dass $K[X]$ ein
\definitionsverweis {Hauptidealbereich}{}{}
ist.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Bestimme sämtliche Teiler von $X$ im Ring $R=K[\Q_{\geq 0}]$, wobei $K$ ein \definitionsverweis {Körper}{}{} ist.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Stifte einen
\definitionsverweis {surjektiven}{}{}
\definitionsverweis {Gruppenhomomorphismus}{}{}
von der
\definitionsverweis {Gruppe}{}{}
der komplexen Zahlen ohne null
\mathl{({\mathbb C} \setminus \{0\}, \cdot,1)}{} in die multiplikative Gruppe der positiven reellen Zahlen
\mathl{(\R_+,\cdot,1 )}{.}
}
{} {}
\inputaufgabegibtloesung
{4 (2+2)}
{
Wir betrachten die endliche Permutationsgruppe $S_n$ zu einer Menge mit $n$ Elementen.
a) Zeige, dass es in $S_n$ Elemente der \definitionsverweis {Ordnung}{}{} $n$ gibt.
b) Man gebe ein Beispiel für eine Permutationsgruppe $S_n$ und einem Element darin, dessen Ordnung größer als $n$ ist.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Es sei $G$ eine
\definitionsverweis {Gruppe}{}{}
und
\mavergleichskette
{\vergleichskette
{ g
}
{ \in }{ G
}
{ }{}
{ }{}
{ }{}
}
{}{}{}
ein Element mit endlicher
\definitionsverweis {Ordnung}{}{.}
Zeige, dass die Ordnung von $g$ mit dem minimalen
\mathl{d \in \N_+}{} übereinstimmt, zu dem es einen
\definitionsverweis {Gruppenhomomorphismus}{}{}
\maabbdisp {} { \Z/(d) } {G
} {}
gibt, in dessen Bild das Element $g$ liegt.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Bestimme, ob die durch die \definitionsverweis {Gaußklammer}{}{} gegebene Abbildung \maabbeledisp {} {\Q} {\Z } {q} { \lfloor q \rfloor } {,} ein \definitionsverweis {Gruppenhomomorphismus}{}{} ist oder nicht.
}
{} {}
\inputaufgabegibtloesung
{3 (1.5+1.5)}
{
(a) Bestimme für die Zahlen $3$, $5$ und $7$ modulare Basislösungen, finde also die kleinsten positiven Zahlen, die in
\mathdisp {\Z/(3) \times \Z/(5) \times \Z/(7)} { }
die Restetupel
$(1,0,0),\, (0,1,0)$ und $(0,0,1)$
repräsentieren.
(b) Finde mit den Basislösungen die kleinste positive Lösung $x$ der simultanen Kongruenzen
\mathdisp {x = 2 \!\! \mod 3 , \, \, \, \, x = 4 \!\! \mod 5 \text{ und } x = 3 \!\! \mod 7} { . }
}
{} {}
\inputaufgabegibtloesung
{12 (3+5+3+1)}
{
Es seien
\mathl{R_1, R_2 , \ldots , R_n}{}
\definitionsverweis {kommutative Ringe}{}{}
und sei
\mavergleichskettedisp
{\vergleichskette
{R
}
{ =} { R_1 \times R_2 \times \cdots \times R_n
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
der
\definitionsverweis {Produktring}{}{.}
\aufzaehlungvier{Es seien
\mathdisp {I_1 \subseteq R_1, I_2 \subseteq R_2 , \ldots , I_n \subseteq R_n} { }
\definitionsverweis {Ideale}{}{.}
Zeige, dass die Produktmenge
\mathdisp {I_1 \times I_2 \times \cdots \times I_n} { }
ein Ideal in $R$ ist.
}{Zeige, dass jedes Ideal
\mathl{I \subseteq R}{} die Form
\mavergleichskettedisp
{\vergleichskette
{I
}
{ =} {
I_1 \times I_2 \times \cdots \times I_n
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
mit Idealen
\mathl{I_j \subseteq R_j}{} besitzt.
}{Sei
\mavergleichskettedisp
{\vergleichskette
{I
}
{ =} {
I_1 \times I_2 \times \cdots \times I_n
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
ein Ideal in $R$. Zeige, dass $I$ genau dann ein Hauptideal ist, wenn sämtliche $I_j$ Hauptideale sind.
}{Zeige, dass $R$ genau dann ein
\definitionsverweis {Hauptidealring}{}{}
ist, wenn alle $R_j$ Hauptidealringe sind.
}
}
{} {}