Kurs:Körper- und Galoistheorie (Osnabrück 2018-2019)/Arbeitsblatt 2/latex

\setcounter{section}{2}






\zwischenueberschrift{Aufwärmaufgaben}




\inputaufgabegibtloesung
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ K }
{ \subseteq }{ L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {Körpererweiterung}{}{.} Zeige, dass $L$ ein $K$-\definitionsverweis {Vektorraum}{}{} ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Bestimme den Grad der \definitionsverweis {Körpererweiterung}{}{}
\mathl{\R \subseteq {\mathbb C}}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ K }
{ \subseteq }{ L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {endliche Körpererweiterung}{}{} vom \definitionsverweis {Grad}{}{} $1$. Zeige, dass $L=K$ ist.

}
{} {}




\inputaufgabe
{}
{

Berechne im Körper $\Q[\sqrt{7}]$ das Produkt
\mathdisp {(-2 + \sqrt{7} ) \cdot (4- \sqrt{7})} { . }

}
{} {}




\inputaufgabe
{}
{

Bestimme in $\Q[\sqrt{ 7 }]$ das \definitionsverweis {Inverse}{}{} von $2 +5 \sqrt{ 7 }$.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{ K }
{ \subseteq }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {endliche Körpererweiterung}{}{} und seien
\mathl{v_1 , \ldots , v_n \in L}{} Elemente, die eine $K$-\definitionsverweis {Basis}{}{} von $L$ bilden. Sei
\mathbed {x \in L} {}
{x \neq 0} {}
{} {} {} {.} Zeige, dass auch
\mathl{xv_1 , \ldots , xv_n \in L}{} eine $K$-Basis von $L$ bilden.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{} mit einer \definitionsverweis {Charakteristik}{}{} $\neq 2$ und es sei
\mathl{K \subset L}{} eine \definitionsverweis {quadratische Körpererweiterung}{}{.} Zeige, dass es dann ein
\mathbed {x \in L} {}
{x \notin K} {}
{} {} {} {,} mit
\mathl{x^2 \in K}{} gibt.

}
{} {}




\inputaufgabe
{}
{

Es sei
\mathl{X^3+pX+q \in \Q[X]}{} und es seien
\mathl{\alpha_1,\alpha_2, \alpha_3 \in {\mathbb C}}{} die Nullstellen dieses Polynoms. Konstruiere unter Bezug auf die Formel von Cardano eine Kette
\mavergleichskettedisp
{\vergleichskette
{\Q }
{ \subseteq} {K }
{ \subseteq} {L }
{ \subseteq} {M }
{ } { }
} {}{}{} von \definitionsverweis {endlichen Körpererweiterungen}{}{} von \anfuehrung{möglichst kleinem}{} \definitionsverweis {Grad}{}{,} so dass $M$ alle Nullstellen und alle \anfuehrung{Hilfszahlen}{,} die in dieser Formel auftreten, enthält. Welche Grade können dabei auftreten?

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskette
{\vergleichskette
{{\mathbb C} }
{ \subseteq }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {endliche Körpererweiterung}{}{.} Zeige
\mavergleichskette
{\vergleichskette
{{\mathbb C} }
{ = }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die \definitionsverweis {Körpererweiterung}{}{}
\mathl{\Q \subseteq \R}{} nicht \definitionsverweis {endlich}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass die Menge der \definitionsverweis {rationalen Funktionen}{}{} über $\R$ einen \definitionsverweis {Körper}{}{} bildet.

}
{(Dieser Körper wird mit
\mathl{\R(X)}{} bezeichnet.)} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,}
\mathl{n \in \N}{} und sei $M$ die Menge der $n$-ten \definitionsverweis {Einheitswurzeln}{}{} in $K$. Zeige, dass $M$ eine \definitionsverweis {Untergruppe}{}{} der \definitionsverweis {Einheitengruppe}{}{} $K^{\times}$ ist.

}
{} {}




\inputaufgabegibtloesung
{}
{

Bestimme die Lösungen der Gleichung
\mavergleichskettedisp
{\vergleichskette
{ x^3-3x+1 }
{ =} { 0 }
{ } { }
{ } { }
{ } { }
} {}{}{} mit der Cardanoschen Formel und drücke diese Lösungen mit Hilfe der neunten primitiven komplexen Einheitswurzel aus.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {Körper}{}{,}
\mathl{a \in K}{} und
\mathl{n \in \N}{.} Beweise die folgenden Aussagen. \aufzaehlungzwei {Wenn
\mathl{b_1,b_2 \in K}{} zwei Lösungen der Gleichung
\mathl{X^n=a}{} sind und
\mathl{b_2 \neq 0}{,} so ist ihr Quotient
\mathl{b_1/b_2}{} eine $n$-te \definitionsverweis {Einheitswurzel}{}{.} } {Wenn
\mathl{b \in K}{} eine Lösung der Gleichung
\mathl{X^n=a}{} und $\zeta$ eine $n$-te Einheitswurzel ist, so ist auch $\zeta b$ eine Lösung der Gleichung
\mathl{X^n=a}{.} }

}
{} {}






\zwischenueberschrift{Aufgaben zum Abgeben}




\inputaufgabe
{3}
{

Es sei
\mathl{K \subseteq \R}{} ein \definitionsverweis {Unterkörper}{}{.} Zeige, dass dann auch $K[ { \mathrm i} ]$ ein Unterkörper von ${\mathbb C}$ ist.

}
{} {}




\inputaufgabe
{2}
{

Bestimme in $\Q[\sqrt{ 11 }]$ das \definitionsverweis {Inverse}{}{} von $3 +5 \sqrt{ 11 }$.

}
{} {}




\inputaufgabe
{2}
{

Es sei
\mavergleichskette
{\vergleichskette
{ K }
{ \subseteq }{L }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} eine \definitionsverweis {endliche Körpererweiterung}{}{} und sei
\mathl{x_1 , \ldots , x_n \in L}{} eine $K$-\definitionsverweis {Basis}{}{} von $L$. Zeige, dass die Multiplikation auf $L$ durch die Produkte
\mathbeddisp {x_i x_j} {}
{1 \leq i\leq j \leq n} {}
{} {} {} {,} eindeutig festgelegt ist.

}
{} {}




\inputaufgabe
{3}
{

Es seien \mathkor {} {\Q \subseteq K \subset {\mathbb C}} {und} {\Q \subseteq L \subset {\mathbb C}} {} zwei \definitionsverweis {endliche Körpererweiterungen}{}{} von $\Q$ vom Grad \mathkor {} {d} {bzw.} {e} {.} Es seien \mathkor {} {d} {und} {e} {} \definitionsverweis {teilerfremd}{}{.} Zeige, dass dann
\mathdisp {K \cap L = \Q} { }
ist.

}
{} {}




\inputaufgabe
{2}
{

Zeige, dass man $\sqrt{3}$ nicht als $\Q$-\definitionsverweis {Linearkombination}{}{} von \mathkor {} {1} {und} {\sqrt{2}} {} schreiben kann.

}
{} {}




\inputaufgabe
{5}
{

Berechne die Quadratwurzeln, die vierten Wurzeln und die achten Wurzeln von ${ \mathrm i}$.

}
{} {}




\inputaufgabe
{3}
{

Zeige, dass die \definitionsverweis {Körpererweiterung}{}{}
\mavergleichskette
{\vergleichskette
{ \R }
{ \subseteq }{ \R(X) }
{ }{ }
{ }{ }
{ }{ }
} {}{}{,} wobei $\R(X)$ den \definitionsverweis {Körper der rationalen Funktionen}{}{} bezeichnet, nicht \definitionsverweis {endlich}{}{} ist.

}
{} {}