Kurs:Lineare Algebra/Teil I/3/Teiltest/Klausur/latex
%Daten zur Institution
%\input{Dozentdaten}
%\renewcommand{\fachbereich}{Fachbereich}
%\renewcommand{\dozent}{Prof. Dr. . }
%Klausurdaten
\renewcommand{\klausurgebiet}{ }
\renewcommand{\klausurtyp}{ }
\renewcommand{\klausurdatum}{ . 20}
\klausurvorspann {\fachbereich} {\klausurdatum} {\dozent} {\klausurgebiet} {\klausurtyp}
%Daten für folgende Punktetabelle
\renewcommand{\aeins}{ 3 }
\renewcommand{\azwei}{ 3 }
\renewcommand{\adrei}{ 2 }
\renewcommand{\avier}{ 4 }
\renewcommand{\afuenf}{ 2 }
\renewcommand{\asechs}{ 3 }
\renewcommand{\asieben}{ 3 }
\renewcommand{\aacht}{ 3 }
\renewcommand{\aneun}{ 3 }
\renewcommand{\azehn}{ 2 }
\renewcommand{\aelf}{ 3 }
\renewcommand{\azwoelf}{ 2 }
\renewcommand{\adreizehn}{ 2 }
\renewcommand{\avierzehn}{ 4 }
\renewcommand{\afuenfzehn}{ 2 }
\renewcommand{\asechzehn}{ 1 }
\renewcommand{\asiebzehn}{ 3 }
\renewcommand{\aachtzehn}{ 1 }
\renewcommand{\aneunzehn}{ 3 }
\renewcommand{\azwanzig}{ 4 }
\renewcommand{\aeinundzwanzig}{ 8 }
\renewcommand{\azweiundzwanzig}{ 5 }
\renewcommand{\adreiundzwanzig}{ 66 }
\renewcommand{\avierundzwanzig}{ }
\renewcommand{\afuenfundzwanzig}{ }
\renewcommand{\asechsundzwanzig}{ }
\punktetabellezweiundzwanzig
\klausurnote
\newpage
\setcounter{section}{0}
\inputaufgabegibtloesung
{3}
{
Definiere die folgenden \zusatzklammer {kursiv gedruckten} {} {} Begriffe. \aufzaehlungsechs{Eine \stichwort {Abbildung} {} $F$ von einer Menge $L$ in eine Menge $M$.
}{Eine \stichwort {surjektive} {} Abbildung \maabbdisp {f} {L} {M } {.}
}{Ein \stichwort {Körper} {.}
}{Eine \stichwort {Linearkombination} {} in einem $K$-\definitionsverweis {Vektorraum}{}{.}
}{Die \stichwort {lineare Unabhängigkeit} {} von Vektoren $v_1 , \ldots , v_n$ in einem $K$-Vektorraum $V$.
}{Die \stichwort {Dimension} {} eines $K$-Vektorraums $V$ \zusatzklammer {$V$ besitze ein endliches Erzeugendensystem} {} {.} }
}
{} {}
\inputaufgabegibtloesung
{3}
{
Formuliere die folgenden Sätze. \aufzaehlungdrei{Der Satz über die Nichtnullteilereigenschaft in einem Körper $K$.}{Das \stichwort {Superpositionsprinzip} {} für ein inhomogenes \zusatzklammer {und das zugehörige homogene} {} {} Gleichungssystem über einem Körper $K$.}{Das \stichwort {Basisaustauschlemma} {.}}
}
{} {}
\inputaufgabegibtloesung
{2}
{
Wenn Karl an Susanne denkt, bekommt er feuchte Hände, einen Kloß im Hals und einen roten Kopf. Einen roten Kopf bekommt er genau dann, wenn er an Susanne denkt oder wenn er das leere Tor nicht trifft. Wenn Karl das leere Tor trifft, bekommt er feuchte Hände. Karl bekommt den Ball vor dem leeren Tor. Kurz darauf bekommt er feuchte Hände, einen roten Kopf, aber keinen Kloß im Hals. Hat er an Susanne gedacht? Hat er das leere Tor getroffen?
}
{} {}
\inputaufgabegibtloesung
{4}
{
Eine Bahncard $25$, mit der man ein Jahr lang $25$ Prozent des Normalpreises einspart, kostet $62$ Euro und eine Bahncard $50$, mit der man ein Jahr lang $50$ Prozent des Normalpreises einspart, kostet $255$ Euro. Für welchen Jahresgesamtnormalpreis ist keine Bahncard, die Bahncard $25$ oder die Bahncard $50$ die günstigste Option?
}
{} {}
\inputaufgabegibtloesung
{2}
{
Es seien
$A,\, B$ und $C$
Mengen. Beweise die Identität
\mavergleichskettedisp
{\vergleichskette
{A \setminus { \left( B \setminus C \right) }
}
{ =} { { \left( A \setminus B \right) } \cup { \left( A \cap C \right) }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabegibtloesung
{3 (1+1+1)}
{
Die Funktionen
\maabbdisp {f,g,h} {\R} {\R
} {}
seien durch
\mavergleichskettedisp
{\vergleichskette
{f(x)
}
{ =} {x^3+x
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{,}
\mavergleichskettedisp
{\vergleichskette
{g(y)
}
{ =} {y^2-1
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
und
\mavergleichskettedisp
{\vergleichskette
{h(z)
}
{ =} { 3z+4
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gegeben.
\aufzaehlungdrei{Berechne
\mathl{g \circ f}{.}
}{Berechne
\mathl{h \circ g}{.}
}{Berechne
\mathl{h \circ g \circ f}{} auf zwei unterschiedliche Arten.
}
}
{} {}
\inputaufgabegibtloesung
{3}
{
Es seien $L$ und $M$ Mengen und es sei \maabbdisp {f} {L} {M } {} eine Abbildung mit dem \definitionsverweis {Graphen}{}{} $\Gamma_f \subseteq L \times M$. Zeige, dass die Abbildung \maabbeledisp {\psi= \operatorname{Id}_{ L } \times f} {L} {L\times M } {x} {(x, f(x)) } {,} eine Bijektion zwischen $L$ und dem Graphen $\Gamma_f$ induziert. Was ist die Verknüpfung von $\psi$ mit der zweiten Projektion \maabbeledisp {p_2} {L \times M} {M } {(x,y)} {y } {?}
}
{} {}
\inputaufgabegibtloesung
{3 (1+1+1)}
{
Wir betrachten die durch die Wertetabelle
\wertetabellesiebenausteilzeilen { $x$ }
{\mazeileundfuenf {1} {2} {3} {4} {5} }
{\mazeileundzwei {6} {7
} }
{ $\varphi(x)$ }
{\mazeileundfuenf {4} {7} {4} {5} {1} }
{\mazeileundzwei {1} {2} }
gegebene Abbildung
\maabbdisp {\varphi} {\{1,2,3,4,5,6,7\} } {\{1,2,3,4,5,6,7\}
} {.}
a) Bestimme das Bild von
\mathl{\{1,2,3\}}{} unter $\varphi$.
b) Bestimme das Urbild von
\mathl{\{4,5,6,7\}}{} unter $\varphi$.
c) Erstelle eine Wertetabelle für
\mavergleichskettedisp
{\vergleichskette
{\varphi^3
}
{ =} { \varphi \circ \varphi \circ \varphi
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabegibtloesung
{3}
{
Beweise die \stichwort {Nichtnullteilereigenschaft} {} für einen Körper $K$.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Zeige, dass die \definitionsverweis {Matrizenmultiplikation}{}{} von quadratischen Matrizen im Allgemeinen nicht \definitionsverweis {kommutativ}{}{} ist.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Berechne das
\definitionsverweis {Matrizenprodukt}{}{}
\mathdisp {\begin{pmatrix} 4 & 0 & 0 & -3 & 7 \\ 8 & 3 & 1 & 0 & -5 \\ 6 & 2 & -1 & -2 & 3 \\ -4 & 5 & 1 & 0 & 3 \end{pmatrix} \cdot \begin{pmatrix} 3 & 2 & -4 \\ 1 & -1 & 5 \\ 0 & 6 & 1 \\ -5 & 2 & 0 \\ 6 & -3 & -2 \end{pmatrix}} { . }
}
{} {}
\inputaufgabegibtloesung
{2}
{
Erstelle eine Geradengleichung für die Gerade im $\R^2$, die durch die beiden Punkte \mathkor {} {(2,3)} {und} {(5,-7)} {} verläuft.
}
{} {}
\inputaufgabegibtloesung
{2}
{
Kevin zahlt für einen Winterblumenstrauß mit $3$ Schneeglöckchen und $4$ Mistelzweigen
\mathl{2{,}50}{} \euro\ und Jennifer zahlt für einen Strauß aus $5$ Schneeglöckchen und $2$ Mistelzweigen
\mathl{2{,}30}{} \euro . Wie viel kostet ein Strauß mit einem Schneeglöckchen und $11$ Mistelzweigen?
}
{} {}
\inputaufgabegibtloesung
{4}
{
Löse das
\definitionsverweis {inhomogene Gleichungssystem}{}{}
\mathdisp {\begin{matrix} 3 x &
\, \, \, \, \, \, \, \, &
+ z &
+4 w & = & 4 \\ 2 x &
+2 y &
\, \, \, \, \, \, \, \, &
+ w & = & 0 \\ 4 x &
+6 y &
\, \, \, \, \, \, \, \, &
+ w & = & 2 \\ x &
+3 y &
+5 z &
\, \, \, \, \, \, \, \, & = & 3 \, . \end{matrix}} { }
}
{} {}
\inputaufgabegibtloesung
{2}
{
Bestimme für die Teilmenge
\mavergleichskettedisp
{\vergleichskette
{ T
}
{ =} { { \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \mid a_{11} \leq a_{22} \right\} }
}
{ \subseteq} { \operatorname{Mat}_{ 2 \times 2 } (\R)
}
{ } {
}
{ } {
}
}
{}{}{,}
welche der Untervektorraumaxiome erfüllt sind und welche nicht.
}
{} {}
\inputaufgabegibtloesung
{1}
{
Bestimme \zusatzklammer {ohne Begründung} {} {,} welche der folgenden skizzierten geometrischen Objekte im $\R^2$ als Lösungsmenge eines linearen \zusatzklammer {inhomogenen} {} {} Gleichungssystems auftreten können \zusatzklammer {man denke sich die Objekte ins Unendliche fortgesetzt} {} {.}
\aufzaehlungfuenf{
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {AY 3 8910 obwiednia 1100.svg} }
\end{center}
\bildtext {} }
\bildlizenz { AY 3 8910 obwiednia 1100.svg } {} {Masur} {Commons} {gemeinfrei} {}
}{
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Primka.png} }
\end{center}
\bildtext {} }
\bildlizenz { Primka.png } {} {Vojtech001} {Commons} {gemeinfrei} {}
}{
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Point and line.png} }
\end{center}
\bildtext {} }
\bildlizenz { Point and line.png } {} {Περίεργος} {el. Wikipedia} {GnuFDL} {}
}{
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Disk 1.svg} }
\end{center}
\bildtext {} }
\bildlizenz { Disk 1.svg } {} {Paris 16} {Commons} {CC-by-sa 4.0} {}
}{
\bild{ \begin{center}
\includegraphics[width=5.5cm]{\bildeinlesung {Zero-dimension.GIF} }
\end{center}
\bildtext {} }
\bildlizenz { Zero-dimension.GIF } {} {File Upload Bot (Magnus Manske)} {Commons} {Gemeinfrei} {}
}
}
{} {}
\inputaufgabegibtloesung
{3}
{
Drücke in $\R^3$ den Vektor
\mathdisp {(1,0,0)} { }
als
\definitionsverweis {Linearkombination}{}{}
der Vektoren
\mathdisp {(1,-2,5), (4,0,3) \text{ und } (2,1,1)} { }
aus.
}
{} {}
\inputaufgabe
{1}
{
Man gebe im $\R^3$ drei Vektoren an, sodass je zwei von ihnen \definitionsverweis {linear unabhängig}{}{} sind, aber alle drei zusammen linear abhängig.
}
{} {}
\inputaufgabegibtloesung
{3}
{
Es sei $V$ ein
$K$-\definitionsverweis {Vektorraum}{}{}
und es seien
\mavergleichskette
{\vergleichskette
{ v_1,v_2,v_3
}
{ \in }{ V
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
Vektoren. Zeige, dass
\mathl{v_1,v_2,v_3}{} genau dann
\definitionsverweis {linear unabhängig}{}{}
sind, wenn
\mathl{v_1,v_1+v_2,v_1+v_2+v_3}{} linear unabhängig sind.
}
{} {}
\inputaufgabegibtloesung
{4}
{
Im $\R^3$ seien die beiden
\definitionsverweis {Untervektorräume}{}{}
\mavergleichskettedisp
{\vergleichskette
{ U
}
{ =} { { \left\{ s \begin{pmatrix} 2 \\1\\ 7 \end{pmatrix} + t \begin{pmatrix} 4 \\-2\\ 9 \end{pmatrix} \mid s,t \in \R \right\} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
und
\mavergleichskettedisp
{\vergleichskette
{ V
}
{ =} { { \left\{ p \begin{pmatrix} 3 \\1\\ 0 \end{pmatrix} + q \begin{pmatrix} 5 \\2\\ -4 \end{pmatrix} \mid p,q \in \R \right\} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gegeben. Bestimme eine Basis für
\mathl{U \cap V}{.}
}
{} {}
\inputaufgabegibtloesung
{8}
{
Beweise den Basisaustauschsatz.
}
{} {}
\inputaufgabegibtloesung
{5}
{
Es sei $K$ ein
\definitionsverweis {Körper}{}{}
und es seien
\mathkor {} {V} {und} {W} {}
\definitionsverweis {endlichdimensionale}{}{}
$K$-\definitionsverweis {Vektor\-räume}{}{} mit
\mavergleichskette
{\vergleichskette
{ \dim_{ K } { \left( V \right) }
}
{ = }{ n
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ \dim_{ K } { \left( W \right) }
}
{ = }{ m
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Welche Dimension besitzt der
\definitionsverweis {Produktraum}{}{}
$V \times W$?
}
{} {}