Kurs:Lineare Algebra I/Affine Räume

Punkte und Vektoren

Bearbeiten

Im Kapitel 1 haben wir den Standardraum   eingeführt und seine Elemente einmal als Punkte und andererseits als Vektoren interpretiert. Die naive Vektorvorstellung (als gerichtete Strecke) war hilfreich zur Veranschaulichung der Operationen Vektoraddition und skalare Multiplikation, die für Punkte keinen Sinn machen. Ferner gibt es im Vektorraum stets ein ausgezeichnetes Element - den Nullvektor. Dagegen sind im Punktraum alle Elemente gleichberechtigt. Durch den Begriff des affinen Punktraumes werden wir mathematisch korrekt zwischen Punkten und Vektoren unterscheiden. Nehmen wir den naiven Punktraum als gegeben, dann wollen wir jetzt Vektoren als Parallelverschiebungen (Translationen) des Punktraumes interpretieren, die sich durch einen (ungebundenen) Pfeil charakterisieren lassen. Translationen können verknüpft werden (Hintereinanderausführung der Abbildungen) und durch einen skalaren Faktor gedehnt (resp. gestaucht) werden. Diese beiden Operationen induzieren die Struktur eines Vektorraumes auf der Menge aller Translationen des Punktraumes. Dieses Modell führt zum Begriff des affinen Raumes, die zugehörige mathematische Theorie ist die analytische Geometrie. Lineare Algebra und analytische Geometrie sind zwei verschiedene Betrachtungsweisen zum gleichen mathematischen Gebiet.

Definition 4.1

Bearbeiten
Ein affiner Raum ist ein Tripel ( ) aus einer nichtleeren Punktmenge  , einem Vektorraum (von Translationen)   und einer Abbildung (Operation von   auf  ) der Form  :
 ,
die folgenden Regeln genügt:
( )  ,
( )  ,
( ) Je zwei Punkte P,Q bestimmen eindeutig einen Vektor   mit  .

Schreibweisen:  . Jedem Vektor   entspricht die Translation  . Die Dimension eines affinen Raumes ist die Dimension des zugehörigen Vektorraumes,  . Meist spricht man allein von der Punktmenge   als affinen Raum ohne den zugehörigen Vektorraum explizit anzugeben. Die Punktmenge ist bijektiv zum Vektorraum der Translationen nach Fixierung eines Punktes  , indem jedem Punkt   der ’Ortvektor’ von   bzgl.   zugeordnet wird:  . Die dazu inverse Abbildung lautet:  .

Definition 4.2

Bearbeiten
Eine Teilmenge eines affines Raumes   der Form   und   ein Vektorunterraum, heißt affiner Unterraum.

Ein affiner Unterraum ist selbst affiner Raum. Für jeden Punkt   gilt  . Beispiele:

1. Der affine n-dimensionale Standardraum:  . Zur Unterscheidung zwischen Punkten und Vektoren wird eine ( )-te Komponente vorangestellt, die 1 für Punkte und 0 für Vektoren gesetzt wird.
2. Die Lösungsmenge eines inhomogenen linearen Gleichungssystems   ist ein affiner Raum. Die Translationen sind die Lösungen des zugehörigen homogenen Gleichungssystems  .   ist affiner Unterraum des affinen Standardraumes  . Umgekehrt ist jeder affine Unterraum des Standardraumes Lösungsmenge eines linearen Gleichungssystems.
3. Je zwei verschiedene Punkte   liegen in einem eindeutig bestimmten affinen Unterraum:
 , der Geraden durch   und  .

Satz 4.3

Bearbeiten
Eine Teilmenge   von Punkten eines affinen Raumes ist affiner Unterraum gdw. mit je zwei Punkten die Gerade durch diese Punkte in   liegt:  .

Folgende Einschränkung ist zu beachten: Im Beweis wird benutzt:   in  . Dies ist nicht in jedem Körper erfüllt. Man denke an  . Deshalb ist diese Bedingung notwendige Voraussetzung des Satzes!

Lage affiner Unterräume

Bearbeiten

Der Durchschnitt zweier affiner Unterräume ist offensichtlich wieder ein affiner Unterraum, falls es einen gemeinsamen Punkt gibt: Sei  , dann gilt  . Im Gegensatz zu Vektorunterräumen kann der Durchschnitt affiner Unterräume leer sein:

Definition 4.4

Bearbeiten
Seien   zwei affine Unterräume mit leerem Durchschnitt.   und   heißen zueinander parallel, falls die zugehörigen Translationsräume ineinander enthalten sind, d.h.   oder umgekehrt. Andernfalls heißen die Unterräume windschief.

Jeder Punktmenge ordnen wir den kleinsten affinen Unterraum zu, der diese enthält:

Definition 4.5

Bearbeiten
Sei   eine Menge von Punkten, dann heißt der kleinste affine Unterraum, der   enthält, die affine Hülle  .

Lemma 4.6

Bearbeiten
 .

Bezeichne   als Verbindung der affinen Unterräume   und  . Man vergleiche die ’affine Hülle’ mit der ’linearen Hülle’. Welche Konstruktion im Vektorraum entspricht der ’Verbindung’? Ist  , dann ist  . Dies gilt jedoch nur, wenn der Durchschnitt der Unteräume nicht leer ist. Allgemein haben wir die folgende Aussage:

Lemma 4.7

Bearbeiten
Seien   und   affine Unterräume, seien   und   zwei Punkte. Die affine Hülle von   und   ist von der Form  , wobei  .

Corollar 4.8 (5. Dimensionsformel)

Bearbeiten
Ist  , dann gilt  .

Der linearen Unabhängigkeit von Vektoren entspricht die allgemeine Lage von Punkten.

Definition 4.9

Bearbeiten
Die Punkte   heißen in allgemeiner Lage, wenn   für  .

Lemma 4.10

Bearbeiten
  sind in allgemeiner Lage gdw.   gdw.   linear unabhängig in  .

Insbesondere hängt damit die Eigenschaft ´allgemeine Lage´ nicht von der Reihenfolge der Punkte ab. Maximal ( ) Punkte sind in einem  -dimensionalen affinen Raum in allgemeiner Lage. (Hinweis: Hat eine Punktmenge   mehr als   Elemente, so gibt es noch eine verallgemeinerte Variante zum Begriff ’allgemeine Lage’, in dem definiert wird:   für jede Teilmenge  . Frage: Wie könnte man den Begriff ’allgemeine Lage’ für eine beliebige Menge von Vektoren formulieren?)

Satz 4.11

Bearbeiten
Jeder affine Unterraum   ist Lösungsmenge eines linearen Gleichungssystems:
 .

Affine und baryzentrische Koordinaten

Bearbeiten

Im Vektorraum induziert jede Basis einen Koordinatenisomorphismus auf den Standardvektorraum. Im affinen Raum gilt dies analog, man benötigt dafür stets noch einen Punkt. Damit kann dann insbesondere der letzte Satz auf jeden affinen Raum verallgemeinert werden.

Definition 4.12

Bearbeiten
Eine Menge   bestehend aus einem Punkt von   (Ursprung) und einer Basis von   heißt affines Koordinatensystem. Die zugehörige Koordinatenabbildung   ordnet jedem Punkt   das Koordinaten-Tupel   zu.

Analog zum Basiswechsel gibt es reguläre Transformationsmatrizen hier aus   der Form  , die den Wechsel des Koordinatensystems beschreiben. Dabei ist   die Transformationsmatrix zwischen den Basen des zugehörigen Vektorraumes und in der ersten Spalte   stehen die Koordinaten des Ursprungs bzgl. des neuen Koordinatensystems. Für Anwendungen in der linearen Optimierung sind die folgenden Begriffe bedeutsam. Sie gelten im wesentlichen jedoch nur für reelle affine Räume. Deshalb sei bis zum Ende dieses Anschnittes   vorausgesetzt, d. h. alle affinen Räume und Vektorräume seien reell. Zur Einführung der so genannten baryzentrischen Koordinaten benötigen wir die folgende Vorbereitung.

Lemma 4.13

Bearbeiten
Seien   Punkte und   reelle Zahlen mit  , dann ist der Punkt   unabhängig von der Auswahl eines Punktes  .

Definition 4.14

Bearbeiten
Seien   Punkte und   reelle Zahlen mit  , dann heißt   eine baryzentrische Darstellung bzgl. der Punkte  . Dies ist wohldefiniert durch  .

Bemerkungen:

  • Ein Punkt   besitzt eine baryzentrische Darstellung bzgl. der Punkte   gdw.  .
  • Die baryzentrische Darstellung eines Punktes   ist eindeutig gdw. die Punkte   in allgemeiner Lage sind. In diesem Fall sprechen wir von den Koeffizienten   als die baryzentrischen Koordinaten von P.
  • Ein Punkt   liegt zwischen   und   gdw.   und   und  . Mit [ ] bezeichnen wir die Menge dieser Punkte, also die Strecke von   nach  . Entsprechende Verallgemeinerungen gelten für konvexe Vielecke. (Hier benötigen wir für die Ordnungsrelation   die reellen Zahlen!)
  • Der Punkt   ist der Mittelpunkt der Strecke [A,B].
  • Der Punkt   ist der ’Schwerpunkt’ des Dreiecks mit dem Ecken A,B,C (hier auch der Schnittpunkt der Seitenhalbierenden).

Entsprechende Verallgemeinerungen gelten für Vielecke. Von besonderem Interesse in der linearen Optimierung sind konvexe Polyeder als höher-dimensionale Verallgemeinerung von konvexen Vielecken. Am einfachsten lassen sich konvexe Polyeder als konvexe Hülle einer endlichen Punktmenge beschreiben:

Definition 4.15 (konvex, konvexe Hülle, endliches konvexes Polyeder)

Bearbeiten
Eine Teilmenge   heißt konvex, wenn mit je zwei Punkten   die Verbindungsstrecke   stets in   liegt. Sei   eine Punktmenge. Die konvexe Hülle   ist die kleinste konvexe Obermenge von  . Ein endliches konvexes Polyeder ist die konvexe Hülle von endlich vielen Punkten.

Die konvexe Hülle ist (wie auch die lineare und die affine Hülle) ein Hüllenoperator, d. h.  . Die konvexe Hülle von   Punkten in allgemeiner Lage wird ein k-Simplex genannt.

Satz 4.16

Bearbeiten
 .

Offensichtlich ist der Durchschnitt konvexer Mengen wieder konvex. Die Menge der Punkte, die eine lineare Ungleichung erfüllen, nennen wir Halbraum. Halbräume sind konvex. Damit ist die Lösungsmenge eines Systems von linearen Gleichungen und linearen Ungleichungen ebenfalls konvex. In der linearen Optimierung wird daran anknüpfend die Frage gestellt, für eine konvexe Menge gegeben durch lineare Gleichungen und lineare Ungleichungen zu entscheiden, ob sie ein endliches Polyeder ist und wie die Ecken zu finden sind.

Affine Abbildungen

Bearbeiten

Zwischen affinen Räumen betrachten wir affine Abbildungen. Diese sollen geometrische Eigenschaften im affinen Raum erhalten: (1.) Geraden bleiben erhalten. (2.) Teilverhältnisse bleiben erhalten.

Liegen   auf einer Geraden  ,  , dann ist  . Die Zahl   wird Teilverhältnis von   genannt:  . Um die folgende Definition einer affinen Abbildung zu motivieren, schließen wir wie folgt: Sei   eine Abbildung mit den Eigenschaften (1.) und (2.). Wir betrachten das Bild des Parallelogramms mit den Eckpunkten  ,   und   einschließlich seiner Diagonalen. Dies ist dann wieder ein Parallelogramm (warum?). Damit induziert   eine Abbildung, und sogar eine lineare:

 .

Definition 4.17

Bearbeiten
Seien   und   affine Räume, eine Abbildung   heißt affin, wenn eine lineare Abbildung der zugehörigen Vektorräume   existiert, so dass gilt:   für alle Punkte  .

Anders gesagt, eine affine Abbildung ist die Komposition einer Translation mit einer linearen Abbildung.

Beispiele: Translationen (hier:  ), Parallelprojektionen in einen affinen Unterraum (hier ist   ein Projektionsoperator:  ) und Zentralprojektionen zwischen parallelen Unterräumen (hier:  ).

Analog zum Prinzip der linearen Fortsetzung in Vektorräumen gilt für affine Abbildungen:

Satz 4.18

Bearbeiten
Eine affine Abbildung   ist eindeutig bestimmt durch das Bild von   Punkten in allgemeiner Lage,  .

Insbesondere können wir einer affinen Abbildung   eine Matrix   zuordnen. Dabei ergeben sich die Spalten aus den Bildern  , also  . Entsprechend der Konvention mit der ’0-ten Komponente’ gilt sowohl für Punkte, als auch für Vektoren:   und  . Ferner kann unschwer der Formalismus der Darstellungsmatrix einer affiner Abbildung bzgl. affiner Koordinatensysteme formuliert werden. Es gelten analoge Transformationsformeln.