Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I/Arbeitsblatt 12/latex
\setcounter{section}{12}
\zwischenueberschrift{Aufwärmaufgaben}
\inputaufgabe
{}
{
Zeige, dass es in $\Q$ kein Element $x$ mit
\mavergleichskette
{\vergleichskette
{ x^2
}
{ = }{ 2
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gibt.
}
{} {}
\inputaufgabe
{}
{
Berechne von Hand die Approximationen $x_1,x_2,x_3,x_4$ im Heron-Verfahren für die Quadratwurzel von $5$ zum Startwert
\mavergleichskette
{\vergleichskette
{ x_0
}
{ = }{ 2
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{}
{
Es sei
\mathl{{ \left( x_n \right) }_{n \in \N }}{} eine
\definitionsverweis {reelle Folge}{}{.}
Zeige, dass die Folge genau dann gegen $x$
\definitionsverweis {konvergiert}{}{,}
wenn es für jedes
\mavergleichskette
{\vergleichskette
{ k
}
{ \in }{ \N_+
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
ein
\mavergleichskette
{\vergleichskette
{ n_0
}
{ \in }{ \N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
derart gibt, dass für alle
\mavergleichskette
{\vergleichskette
{ n
}
{ \geq }{ n_0
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
die Abschätzung
\mavergleichskette
{\vergleichskette
{ \betrag { x_n-x }
}
{ \leq }{ { \frac{ 1 }{ k } }
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gilt.
}
{} {}
\inputaufgabe
{}
{
Untersuche die durch
\mavergleichskettedisp
{\vergleichskette
{x_n
}
{ =} { { \frac{ 1 }{ n^2 } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gegebene
\definitionsverweis {Folge}{}{}
\zusatzklammer {
\mavergleichskettek
{\vergleichskettek
{ n
}
{ \geq }{ 1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}} {} {}
auf
\definitionsverweis {Konvergenz}{}{.}
}
{} {}
\inputaufgabegibtloesung
{}
{
Es seien
\mathkor {} {{ \left( x_n \right) }_{n \in \N }} {und} {{ \left( y_n \right) }_{n \in \N }} {}
zwei
\definitionsverweis {konvergente}{}{}
\definitionsverweis {reelle Folgen}{}{}
mit
\mavergleichskette
{\vergleichskette
{ x_n
}
{ \geq }{ y_n
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
für alle
\mavergleichskette
{\vergleichskette
{ n
}
{ \in }{ \N
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass dann
\mavergleichskette
{\vergleichskette
{ \lim_{n \rightarrow \infty} x_n
}
{ \geq }{ \lim_{n \rightarrow \infty} y_n
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
gilt.
}
{} {}
\inputaufgabegibtloesung
{}
{
Es seien \mathkor {} {{ \left( x_n \right) }_{n \in \N }, \, { \left( y_n \right) }_{n \in \N }} {und} {{ \left( z_n \right) }_{n \in \N }} {} drei \definitionsverweis {reelle Folgen}{}{.} Es gelte $x_n \leq y_n \leq z_n \text{ für alle } n \in \N$ und \mathkor {} {{ \left( x_n \right) }_{n \in \N }} {und} {{ \left( z_n \right) }_{n \in \N }} {} \definitionsverweis {konvergieren}{}{} beide gegen den gleichen Grenzwert $a$. Zeige, dass dann auch ${ \left( y_n \right) }_{n \in \N }$ gegen $a$ konvergiert.
}
{} {}
\inputaufgabe
{}
{
Es sei ${ \left( x_n \right) }_{n \in \N }$ eine
\definitionsverweis {konvergente Folge}{}{}
reeller Zahlen mit
\definitionsverweis {Grenzwert}{}{}
$x$. Zeige, dass dann auch die Folge
\mathdisp {{ \left( \betrag { x_n } \right) }_{ n \in \N }} { }
konvergiert, und zwar gegen $\betrag { x }$.
}
{} {}
In den beiden folgenden Aufgaben geht es um die Folge der Fibonacci-Zahlen.
Die Folge der \definitionswort {Fibonacci-Zahlen}{} $f_n$ ist rekursiv definiert durch
\mathdisp {f_1 \defeq 1 \, , f_2 \defeq 1 \text{ und } f_{n+2} \defeq f_{n+1} +f_{n}} { . }
\inputaufgabegibtloesung
{}
{
Beweise durch Induktion die \stichwort {Simpson-Formel} {} oder Simpson-Identität für die
\definitionsverweis {Fibonacci-Zahlen}{}{}
$f_n$. Sie besagt
\zusatzklammer {für \mathlk{n \geq 2}{}} {} {}
\mavergleichskettedisp
{\vergleichskette
{ f_{n+1} f_{n-1} - f_n^2
}
{ =} {(-1)^n
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{.}
}
{} {}
\inputaufgabe
{}
{
Beweise durch Induktion die \stichwort {Binet-Formel} {} für die
\definitionsverweis {Fibonacci-Zahlen}{}{.}
Diese besagt, dass
\mavergleichskettedisp
{\vergleichskette
{ f_n
}
{ =} { \frac{ { \left( \frac{1+\sqrt{5} }{2} \right) }^n - { \left( \frac{1-\sqrt{5} }{2} \right) }^n}{\sqrt{5} }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gilt
\zusatzklammer {
\mavergleichskettek
{\vergleichskettek
{ n
}
{ \geq }{ 1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}} {} {.}
}
{} {}
\inputaufgabe
{}
{
Man untersuche die folgenden Teilmengen
\mavergleichskette
{\vergleichskette
{M
}
{ \subseteq }{ \R
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
auf die Begriffe
\definitionsverweis {obere Schranke}{}{,}
\definitionsverweis {untere Schranke}{}{,}
\definitionsverweis {Supremum}{}{,}
\definitionsverweis {Infimum}{}{,}
\definitionsverweis {Maximum}{}{} und
\definitionsverweis {Minimum}{}{.}
\aufzaehlungneun{ $\{2,-3,-4,5,6,-1,1\}$,
}{ $\left \{\frac{1}{2},\frac{-3}{7} , \frac{-4}{9} , \frac{5}{9} , \frac{6}{13} , \frac{-1}{3}, \frac{1}{4} \right \}$,
}{ $]-5, 2]$,
}{ ${ \left\{ \frac{1}{n} \mid n \in \N_+ \right\} }$,
}{ ${ \left\{ \frac{1}{n} \mid n \in \N_+ \right\} } \cup \{0\}$,
}{ $\Q_-$,
}{ ${ \left\{ x \in \Q \mid x^2 \leq 2 \right\} }$,
}{ ${ \left\{ x \in \Q \mid x^2 \leq 4 \right\} }$,
}{ ${ \left\{ x^2 \mid x \in \Z \right\} }$.
}
}
{} {}
\zwischenueberschrift{Aufgaben zum Abgeben}
\inputaufgabe
{3}
{
Untersuche die durch
\mathdisp {x_n = { \frac{ 1 }{ \sqrt{n} } }} { }
gegebene Folge
\zusatzklammer {
\mavergleichskettek
{\vergleichskettek
{ n
}
{ \geq }{1
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}} {} {}
auf
\definitionsverweis {Konvergenz}{}{.}
}
{} {}
\inputaufgabe
{3}
{
Bestimme den
\definitionsverweis {Grenzwert}{}{}
der durch
\mavergleichskettedisp
{\vergleichskette
{x_n
}
{ =} { { \frac{ 7n^3-3n^2+2n-11 }{ 13n^3-5n+4 } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
definierten
\definitionsverweis {Folge}{}{.}
}
{} {}
\inputaufgabe
{4}
{
Zeige, dass die \definitionsverweis {reelle Folge}{}{}
\mathdisp {{ \left( \frac{n}{2^n} \right) }_{ n \in \N }} { }
gegen $0$
\definitionsverweis {konvergiert}{}{.}
}
{} {}
\inputaufgabe
{5}
{
Untersuche die durch
\mavergleichskettedisp
{\vergleichskette
{x_n
}
{ =} {{ \frac{ \sqrt{n}^n }{ n! } }
}
{ } {
}
{ } {
}
{ } {
}
}
{}{}{}
gegebene Folge auf
\definitionsverweis {Konvergenz}{}{.}
}
{} {}
\inputaufgabe
{5}
{
Es seien $(x_n)_{n \in \N}$ und $(y_n)_{n \in \N}$ Folgen reeller Zahlen und sei die Folge $(z_n)_{n \in \N}$ definiert durch
\mavergleichskette
{\vergleichskette
{ z_{2n-1}
}
{ \defeq }{ x_n
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{}
und
\mavergleichskette
{\vergleichskette
{ z_{2n}
}
{ \defeq }{ y_n
}
{ }{
}
{ }{
}
{ }{
}
}
{}{}{.}
Zeige, dass $(z_n)_{n \in \N}$ genau dann konvergiert, wenn $(x_n)_{n \in \N}$ und $(y_n)_{n \in \N}$ gegen den gleichen Grenzwert konvergieren.
}
{} {}
\inputaufgabe
{3}
{
Bestimme den
\definitionsverweis {Grenzwert}{}{} der durch
\mathdisp {x_n = { \frac{ 2n+5 \sqrt{n} +7 }{ -5 n+3 \sqrt{n} -4 } }} { }
definierten
\definitionsverweis {reellen Folge}{}{.}
}
{} {}
<< | Kurs:Mathematik für Anwender (Osnabrück 2011-2012)/Teil I | >> |
---|