Kurs:Numerik I/Fixpunktsatz von Banach

Einführung Bearbeiten

Der Fixpunktsatz von Banach, auch als Banachscher Fixpunktsatz bezeichnet, ist ein mathematischer Satz aus der Funktionalanalysis. Er gehört zu den Fixpunktsätzen und liefert neben der Existenz und der Eindeutigkeit eines Fixpunktes auch die Konvergenz der Fixpunktiteration. Somit ist die Aussage konstruktiv. Es wird also ein Verfahren zur Bestimmung des Fixpunktes sowie eine Fehlerabschätzung für ebendieses angegeben.

Anwendungen des Fixpunktsatzes Bearbeiten

Mit dem Fixpunktsatz von Banach lässt sich beispielsweise die Konvergenz von iterativen Verfahren wie dem Newton-Verfahren zeigen und der Satz von Picard-Lindelöf beweisen, der Grundlage der Existenztheorie gewöhnlicher Differentialgleichungen ist.

Geschichte Bearbeiten

Der Satz ist nach Stefan Banach benannt, der ihn 1922 zeigte.[1]

Metrische Räume Bearbeiten

Der Banachsche Fixpunktsatz wird allgemein für metrische Räume   und ein nichtleere abschlossene Teilmenge   bewiesen. Damit gilt dieser Satz natürlich auch für die abgeschlossene Teilmengen   der reellen Zahlen mit der Metrik   oder allgemeiner auch für einen Banach-Raum mit der Metrik  .

Definition - Kontraktion Bearbeiten

Sei   ein vollständiger metrischer Raum. Eine Abbildung

 

heißt Kontraktion, wenn mit Kontraktionszahl   existiert, für die gilt:

  für alle  .

Fixpunktsatz von Banach Bearbeiten

Sei   ein vollständiger metrischer Raum,   eine nichtleere, abgeschlossene Menge und   eine Kontraktion mit Kontraktionszahl  . Dann existiert genau ein Fixpunkt  , sodass für einen beliebigen Startwert  , die iterativ definierte   Folge mit   gegen den Fixpunkt   konvergiert.

Bemerkung - Ein Grenzwert beliebiger Startpunkt Bearbeiten

Der Fixpunktsatz von Banach besagt, dass es genau einen Grenzwert   und der Startpunkt   aus   kann beliebig gewählt werden kann. Die Selbsabbildung von   definiert dann Folge   mit  ,...,   und dann immer gegen den einen Fixpunkt konvergiert.

Beweis Bearbeiten

Unter den obigen Voraussetzungen des Satzes muss man nun zeigen, dass

  • (Existenz) ein Fixpunkt   existiert, d.h.   gilt.
  • (Eindeutigkeit) Es gibt genau einen Fixpunkt.
  • (Startpunktunabhängigkeit) Die Konvergenz   der Iteriertenfolgen   gegen   mit  ,...,   ist unabhängig von der Wahl des Startpunktes

 

Beweisschritt 1 Bearbeiten

Der Beweis der Aussage basiert darauf, zu zeigen, dass die Folge   eine Cauchy-Folge ist, die dann aufgrund der Vollständigkeit des zugrundeliegenden Raumes konvergiert.

Zuerst gilt aufgrund der Kontraktivität

 

Durch wiederholtes Anwenden dieser Abschätzung erhält man

  (1)

Des Weiteren folgt durch wiederholtes Abschätzen mit der Dreiecksungleichung

  (2)

Schätzt man die einzelnen Summenglieder der rechten Seite von (2) durch (1) ab, so erhält man

 

Die letzte Abschätzung folgt hier mithilfe der geometrischen Reihe, da  . Aus der Abschätzung folgt direkt, dass   eine Cauchy-Folge ist. Aufgrund der Vollständigkeit existiert dann der Grenzwert

 

der Folge. Da   eine Abbildung von   in sich selbst ist, und   abgeschlossen ist, ist   in der Menge   enthalten.

Da   stetig ist (da kontraktiv), folgt

 ,

der Grenzwert   ist also Fixpunkt.

Angenommen, es existieren zwei Fixpunkte  . Dann ist

  und  .

Aus der Kontraktivität folgt dann

 .

Da aber   ist, muss   sein. Daher ist  .

Beweisschritt 7 Bearbeiten

Die Abbildung   besitzt also einen eindeutig bestimmten Fixpunkt und dieser stimmt für alle Startwerte der oben angegebenen Iterationsvorschrift mit dem Grenzwert der Iteration überein.

Veranschaulichung Bearbeiten

 
Veranschaulichung des Fixpunktsatzes von Banach

Eine Veranschaulichung des Satzes liefert eine Landkarte, auf der die Umgebung, in der man sich befindet, abgebildet ist. Sieht man diese Karte als Kontraktion (lat. con- „zusammen-“ und trahere „ziehen“) der Umgebung, so findet man genau einen Punkt auf der Karte, der mit dem direkt darunter liegenden Punkt in der realen Welt übereinstimmt.[2] Es ist egal, wie groß die Landkarte ist; sie muss nur kleiner als die abgebildete Realität sein. Es ist ebenso unerheblich, wo genau sich die Landkarte befindet, solange sie innerhalb des kartografierten Bereichs liegt. In der nebenstehenden Abbildung befindet sich in der kleineren Landkarte also nach dem Fixpunktsatz von Banach genau ein Punkt, der mit dem in der realen Welt zusammenfällt.[3]

Fehlerabschätzung der Fixpunktiteration Bearbeiten

Für die Iterationsvorschrift

 

gelten folgende Fehlerabschätzungen:

 
 

Außerdem gilt die Abschätzung

 ,

die Konvergenzgeschwindigkeit ist also linear.

Zusammenfassung des Verfahrens Bearbeiten

Gegeben sei eine Funktion  auf dem metrischen Raum  . Zuerst muss die Menge   bestimmt werden, für welche   eine Kontraktion ist, d.h.  . Ist dieses   bestimmt, kann ein Startwert   beliebeig gewählt werden. Abschließend wird   bis zum Unterschreiten der Fehlerschranke durchgeführt.

Bemerkung Bearbeiten

In der Literatur finden sich teils von der oben angegebenen Aussage abweichende Formulierungen. Mögliche Unterschiede sind:

  • Die Eigenschaft der Abbildung  , eine Kontraktion zu sein, wird stattdessen über die Lipschitz-Stetigkeit formuliert. Dann muss   auf   Lipschitz-stetig sein mit einer Lipschitz-Konstante  .
  • Der zugrunde liegende Raum ist ein anderer. So wird der Satz teils auf Banachräumen (das heißt auf vollständigen normierten Räumen) formuliert oder auf  . Die Aussage wie auch der Beweis bleiben identisch, es ist dann lediglich   im Falle eines normierten Raumes   beziehungsweise   im reellen Fall zu setzen.

Anwendungen Bearbeiten

Dieser Satz wird in vielen konstruktiven Sätzen der Analysis benutzt, die wichtigsten sind:

In der numerischen Mathematik spielt die Fixpunktiteration eine wichtige Rolle. Beispiele hierfür sind die Konvergenztheorien numerischer Verfahren, wie das Newton-Verfahren oder das Splitting-Verfahren.

Umkehrung Bearbeiten

Die folgende, auch als Satz von Bessaga bekannte Aussage stellt eine Umkehrung des Fixpunktsatzes dar:

  • Ist   eine Funktion auf einer nichtleeren Menge, so dass   und alle Iterierten   genau einen Fixpunkt haben, so gibt es zu jedem   eine vollständige Metrik   auf  , so dass   bzgl.   eine Kontraktion mit der Kontraktionskonstanten   ist.[4]

Literatur Bearbeiten

Einzelnachweise Bearbeiten

  1. Werner: Funktionalanalysis. 2011, S. 197.
  2. Michael Merz, Mario V. Wüthrich: Mathematik für Wirtschaftswissenschaftler. Vahlen, 2013, S. 433.
  3. Edmund Weitz: Der Fixpunktsatz von Banach. In: YouTube. 2020, abgerufen am 14. Dezember 2022.
  4. William A. Kirk, Brailey Sims (Hrsg.): Handbook of Metric Fixed Point Theory. Kluwer, Dordrecht u. a. 2001, lSBN 0-7923-7073-2, Theorem 8.1.


Seiteninformation Bearbeiten

Diese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.

Wiki2Reveal Bearbeiten

Dieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Numerik I' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.

Wikipedia2Wikiversity Bearbeiten

Diese Seite wurde auf Basis der folgenden Wikipedia-Quelle erstellt: