Kurs:Numerik I/Fixpunktsatz von Banach
Einführung
BearbeitenDer Fixpunktsatz von Banach, auch als Banachscher Fixpunktsatz bezeichnet, ist ein mathematischer Satz aus der Funktionalanalysis. Er gehört zu den Fixpunktsätzen und liefert neben der Existenz und der Eindeutigkeit eines Fixpunktes auch die Konvergenz der Fixpunktiteration. Somit ist die Aussage konstruktiv. Es wird also ein Verfahren zur Bestimmung des Fixpunktes sowie eine Fehlerabschätzung für ebendieses angegeben.
Anwendungen des Fixpunktsatzes
BearbeitenMit dem Fixpunktsatz von Banach lässt sich beispielsweise die Konvergenz von iterativen Verfahren wie dem Newton-Verfahren zeigen und der Satz von Picard-Lindelöf beweisen, der Grundlage der Existenztheorie gewöhnlicher Differentialgleichungen ist.
Geschichte
BearbeitenDer Satz ist nach Stefan Banach benannt, der ihn 1922 zeigte.[1]
Metrische Räume
BearbeitenDer Banachsche Fixpunktsatz wird allgemein für metrische Räume und ein nichtleere abschlossene Teilmenge bewiesen. Damit gilt dieser Satz natürlich auch für die abgeschlossene Teilmengen der reellen Zahlen mit der Metrik oder allgemeiner auch für einen Banach-Raum mit der Metrik .
Definition - Kontraktion
BearbeitenSei ein vollständiger metrischer Raum. Eine Abbildung
heißt Kontraktion, wenn mit Kontraktionszahl existiert, für die gilt:
- für alle .
Fixpunktsatz von Banach
BearbeitenSei ein vollständiger metrischer Raum, eine nichtleere, abgeschlossene Menge und eine Kontraktion mit Kontraktionszahl . Dann existiert genau ein Fixpunkt , sodass für einen beliebigen Startwert , die iterativ definierte Folge mit gegen den Fixpunkt konvergiert.
Bemerkung - Ein Grenzwert beliebiger Startpunkt
BearbeitenDer Fixpunktsatz von Banach besagt, dass es genau einen Grenzwert und der Startpunkt aus kann beliebig gewählt werden kann. Die Selbsabbildung von definiert dann Folge mit ,..., und dann immer gegen den einen Fixpunkt konvergiert.
Beweis
BearbeitenUnter den obigen Voraussetzungen des Satzes muss man nun zeigen, dass
- (Existenz) ein Fixpunkt existiert, d.h. gilt.
- (Eindeutigkeit) Es gibt genau einen Fixpunkt.
- (Startpunktunabhängigkeit) Die Konvergenz der Iteriertenfolgen gegen mit ,..., ist unabhängig von der Wahl des Startpunktes
Beweisschritt 1
BearbeitenDer Beweis der Aussage basiert darauf, zu zeigen, dass die Folge eine Cauchy-Folge ist, die dann aufgrund der Vollständigkeit des zugrundeliegenden Raumes konvergiert.
Zuerst gilt aufgrund der Kontraktivität
Durch wiederholtes Anwenden dieser Abschätzung erhält man
- (1)
Des Weiteren folgt durch wiederholtes Abschätzen mit der Dreiecksungleichung
- (2)
Schätzt man die einzelnen Summenglieder der rechten Seite von (2) durch (1) ab, so erhält man
Die letzte Abschätzung folgt hier mithilfe der geometrischen Reihe, da . Aus der Abschätzung folgt direkt, dass eine Cauchy-Folge ist. Aufgrund der Vollständigkeit existiert dann der Grenzwert
der Folge. Da eine Abbildung von in sich selbst ist, und abgeschlossen ist, ist in der Menge enthalten.
Da stetig ist (da kontraktiv), folgt
- ,
der Grenzwert ist also Fixpunkt.
Angenommen, es existieren zwei Fixpunkte . Dann ist
- und .
Aus der Kontraktivität folgt dann
- .
Da aber ist, muss sein. Daher ist .
Beweisschritt 7
BearbeitenDie Abbildung besitzt also einen eindeutig bestimmten Fixpunkt und dieser stimmt für alle Startwerte der oben angegebenen Iterationsvorschrift mit dem Grenzwert der Iteration überein.
Veranschaulichung
BearbeitenEine Veranschaulichung des Satzes liefert eine Landkarte, auf der die Umgebung, in der man sich befindet, abgebildet ist. Sieht man diese Karte als Kontraktion (lat. con- „zusammen-“ und trahere „ziehen“) der Umgebung, so findet man genau einen Punkt auf der Karte, der mit dem direkt darunter liegenden Punkt in der realen Welt übereinstimmt.[2] Es ist egal, wie groß die Landkarte ist; sie muss nur kleiner als die abgebildete Realität sein. Es ist ebenso unerheblich, wo genau sich die Landkarte befindet, solange sie innerhalb des kartografierten Bereichs liegt. In der nebenstehenden Abbildung befindet sich in der kleineren Landkarte also nach dem Fixpunktsatz von Banach genau ein Punkt, der mit dem in der realen Welt zusammenfällt.[3]
Fehlerabschätzung der Fixpunktiteration
BearbeitenFür die Iterationsvorschrift
gelten folgende Fehlerabschätzungen:
- A-priori-Fehlerabschätzung: Es ist
- A-posteriori-Fehlerabschätzung: Es ist
Außerdem gilt die Abschätzung
- ,
die Konvergenzgeschwindigkeit ist also linear.
Zusammenfassung des Verfahrens
BearbeitenGegeben sei eine Funktion auf dem metrischen Raum . Zuerst muss die Menge bestimmt werden, für welche eine Kontraktion ist, d.h. . Ist dieses bestimmt, kann ein Startwert beliebeig gewählt werden. Abschließend wird bis zum Unterschreiten der Fehlerschranke durchgeführt.
Bemerkung
BearbeitenIn der Literatur finden sich teils von der oben angegebenen Aussage abweichende Formulierungen. Mögliche Unterschiede sind:
- Die Eigenschaft der Abbildung , eine Kontraktion zu sein, wird stattdessen über die Lipschitz-Stetigkeit formuliert. Dann muss auf Lipschitz-stetig sein mit einer Lipschitz-Konstante .
- Der zugrunde liegende Raum ist ein anderer. So wird der Satz teils auf Banachräumen (das heißt auf vollständigen normierten Räumen) formuliert oder auf . Die Aussage wie auch der Beweis bleiben identisch, es ist dann lediglich im Falle eines normierten Raumes beziehungsweise im reellen Fall zu setzen.
Anwendungen
BearbeitenDieser Satz wird in vielen konstruktiven Sätzen der Analysis benutzt, die wichtigsten sind:
- das inverse- und implizite-Funktionen-Theorem
- der Existenz- und Eindeutigkeitssatz von Picard-Lindelöf für gewöhnliche Differentialgleichungen
In der numerischen Mathematik spielt die Fixpunktiteration eine wichtige Rolle. Beispiele hierfür sind die Konvergenztheorien numerischer Verfahren, wie das Newton-Verfahren oder das Splitting-Verfahren.
Umkehrung
BearbeitenDie folgende, auch als Satz von Bessaga bekannte Aussage stellt eine Umkehrung des Fixpunktsatzes dar:
- Ist eine Funktion auf einer nichtleeren Menge, so dass und alle Iterierten genau einen Fixpunkt haben, so gibt es zu jedem eine vollständige Metrik auf , so dass bzgl. eine Kontraktion mit der Kontraktionskonstanten ist.[4]
Literatur
Bearbeiten- Hans-Rudolf Schwarz, Norbert Köckler: Numerische Mathematik. 5., überarbeitete Auflage. Teubner, Stuttgart u. a. 2004, ISBN 3-519-42960-8.
- Otto Forster: Analysis 2. Differentialrechnung im , gewöhnliche Differentialgleichungen. 10., verbesserte Auflage. Springer Spektrum, Wiesbaden 2013, ISBN 978-3-658-02356-0, doi:10.1007/978-3-658-02357-7.
- Dirk Werner: Funktionalanalysis. 7., korrigierte und erweiterte Auflage. Springer-Verlag, Heidelberg Dordrecht London New York 2011, ISBN 978-3-642-21016-7, doi:10.1007/978-3-642-21017-4.
Einzelnachweise
Bearbeiten- ↑ Werner: Funktionalanalysis. 2011, S. 197.
- ↑ Michael Merz, Mario V. Wüthrich: Mathematik für Wirtschaftswissenschaftler. Vahlen, 2013, S. 433.
- ↑ Edmund Weitz: Der Fixpunktsatz von Banach. In: YouTube. 2020, abgerufen am 14. Dezember 2022.
- ↑ William A. Kirk, Brailey Sims (Hrsg.): Handbook of Metric Fixed Point Theory. Kluwer, Dordrecht u. a. 2001, lSBN 0-7923-7073-2, Theorem 8.1.
Seiteninformation
BearbeitenDiese Lernresource können Sie als Wiki2Reveal-Foliensatz darstellen.
Wiki2Reveal
BearbeitenDieser Wiki2Reveal Foliensatz wurde für den Lerneinheit Kurs:Numerik I' erstellt der Link für die Wiki2Reveal-Folien wurde mit dem Wiki2Reveal-Linkgenerator erstellt.
- Die Seite wurde als Dokumententyp PanDocElectron-SLIDE erstellt.
- Link zur Quelle in Wikiversity: https://de.wikiversity.org/wiki/Kurs:Numerik%20I/Fixpunktsatz%20von%20Banach
- siehe auch weitere Informationen zu Wiki2Reveal und unter Wiki2Reveal-Linkgenerator.
Wikipedia2Wikiversity
BearbeitenDiese Seite wurde auf Basis der folgenden Wikipedia-Quelle erstellt: