Start
Zufällige Seite
Anmelden
Einstellungen
Spenden
Über Wikiversity
Haftungsausschluss
Suchen
Kurs
:
Vektor-Algebra/Multiplikation/Vektorprodukt Anwendungen
Sprache
Beobachten
Bearbeiten
<
Kurs:Vektor-Algebra
|
Multiplikation
Sinus-Satz
a
→
+
b
→
+
c
→
=
0
{\displaystyle {\vec {a}}+{\vec {b}}+{\vec {c}}=0}
a
→
×
b
→
=
a
→
×
(
→
0
−
a
−
c
)
{\displaystyle {\vec {a}}\times {\vec {b}}={\vec {a}}\times {\vec {(}}0-a-c)}
a
→
×
(
→
−
c
)
{\displaystyle {\vec {a}}\times {\vec {(}}-c)}
c
→
×
a
→
{\displaystyle {\vec {c}}\times {\vec {a}}}
Andererseits:
a
→
×
b
→
=
c
→
×
a
→
=
b
→
×
c
→
{\displaystyle {\vec {a}}\times {\vec {b}}={\vec {c}}\times {\vec {a}}={\vec {b}}\times {\vec {c}}}
a
→
×
b
→
=
b
→
×
a
→
=
b
→
×
c
→
{\displaystyle {\vec {a}}\times {\vec {b}}={\vec {b}}\times {\vec {a}}={\vec {b}}\times {\vec {c}}}
Beträge:
a
b
⋅
s
i
n
(
π
−
γ
)
=
c
a
⋅
s
i
n
(
π
−
β
)
=
b
c
⋅
s
i
n
(
π
−
α
)
{\displaystyle ab\cdot sin(\pi -\gamma )=ca\cdot sin(\pi -\beta )=bc\cdot sin(\pi -\alpha )}
a
s
i
n
α
=
c
s
i
n
γ
=
b
s
i
n
β
{\displaystyle {\frac {a}{sin\alpha }}={\frac {c}{sin\gamma }}={\frac {b}{sin\beta }}}