Kurs:Vorkurs Mathematik (Osnabrück 2021)/Arbeitsblatt 3/latex

\setcounter{section}{3}






\zwischenueberschrift{Übungsaufgaben}




\inputaufgabegibtloesung
{}
{

Bestimme, welche der beiden rationalen Zahlen \mathkor {} {p} {und} {q} {} größer ist.
\mathdisp {p= { \frac{ 573 }{ -1234 } } \text{ und } q = { \frac{ -2007 }{ 4322 } }} { . }

}
{} {}




\inputaufgabegibtloesung
{}
{

Zwei Fahrradfahrer, \mathkor {} {A} {und} {B} {,} fahren auf ihren Fahrrädern eine Straße entlang. Fahrer $A$ macht pro Minute $40$ Pedalumdrehungen, hat eine Übersetzung von Pedal zu Hinterrad von $1$ zu $6$ und Reifen mit einem Radius von $39$ Zentimetern. Fahrer $B$ braucht für eine Pedaldrehung $2$ Sekunden, hat eine Übersetzung von $1$ zu $7$ und Reifen mit einem Radius von $45$ Zentimetern.

Wer fährt schneller?

}
{} {}




\inputaufgabegibtloesung
{}
{

Zwei Personen, \mathkor {} {A} {und} {B} {,} liegen unter einer Palme, $A$ besitzt $2$ Fladenbrote und $B$ besitzt $3$ Fladenbrote. Eine dritte Person $C$ kommt hinzu, die kein Fladenbrot besitzt, aber $5$ Taler. Die drei Personen werden sich einig, für die $5$ Taler die Fladenbrote untereinander gleichmäßig aufzuteilen. Wie viele Taler gibt $C$ an $A$ und an $B$?

}
{} {}




\inputaufgabe
{}
{

Man gebe die Antworten als Bruch \zusatzklammer {bezogen auf das angegebene Vergleichsmaß} {} {:} Um wie viel ist eine Dreiviertelstunde länger als eine halbe Stunde, und um wie viel ist eine halbe Stunde kürzer als eine Dreiviertelstunde?

}
{} {}




\inputaufgabe
{}
{

Man erläutere die Uhrzeitangaben \anfuehrung{halb fünf}{,} \anfuehrung{viertel fünf}{,} \anfuehrung{drei viertel fünf}{.} Was würde \anfuehrung{ein sechstel fünf}{} und \anfuehrung{drei siebtel fünf}{} bedeuten?

}
{} {}




\inputaufgabegibtloesung
{}
{

Eine Bahncard $25$, mit der man ein Jahr lang $25$ Prozent des Normalpreises einspart, kostet $62$ Euro und eine Bahncard $50$, mit der man ein Jahr lang $50$ Prozent des Normalpreises einspart, kostet $255$ Euro. Für welchen Jahresgesamtnormalpreis ist keine Bahncard, die Bahncard $25$ oder die Bahncard $50$ die günstigste Option?

}
{} {}




\inputaufgabe
{}
{

Zeige, und zwar allein unter Bezug auf Rechengesetze in $\Z$, dass die durch \aufzaehlungzwei {
\mathdisp {{ \frac{ a }{ c } } \cdot { \frac{ b }{ d } } \defeq { \frac{ ab }{ cd } }} { }
} {
\mathdisp {{ \frac{ a }{ c } } + { \frac{ b }{ d } } \defeq { \frac{ ad+bc }{ cd } }} { }
} definierte Addition und Multiplikation auf den rationalen Zahlen wohldefiniert ist, und dass die Assoziativität, die Kommutativität und das Distributivgesetz gelten.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass man jede rationale Zahl als Bruch $a/b$ mit teilerfremdem Zähler und Nenner darstellen kann.

}
{\zusatzklammer {Man nennt dies die gekürzte Darstellung der rationalen Zahl.} {} {}} {}




\inputaufgabe
{}
{

Beweise durch Induktion die folgende Formel.
\mavergleichskettedisp
{\vergleichskette
{ 1+\sum_{i = 1}^n \frac{2^{2(i-1)} }{3^i} }
{ =} { { \left( \frac{4}{3} \right) }^n }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Gabi Hochster hat die Addition und die Multiplikation der rationalen Zahlen verstanden und möchte jetzt die Operation verstehen, bei der man
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ a }{ b } } \oplus { \frac{ c }{ d } } }
{ \defeq} { { \frac{ a+c }{ b+d } } }
{ } { }
{ } { }
{ } { }
} {}{}{} setzt. Sie beschränkt sich auf positive
\mathl{a,b,c,d}{.} Überprüfe ihre Behauptungen: \aufzaehlungfuenf{Bei
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ a }{ b } } }
{ \leq} { { \frac{ c }{ d } } }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt
\mavergleichskettedisp
{\vergleichskette
{ { \frac{ a }{ b } } }
{ \leq} { { \frac{ a+c }{ b+d } } }
{ \leq} { { \frac{ c }{ d } } }
{ } { }
{ } { }
} {}{}{.} Dies kann man algebraisch und geometrisch beweisen. }{Die Verknüpfung ist für rationale Zahlen nicht wohldefiniert. }{Wenn man für rationale Zahlen stets ihre teilerfremde Darstellung nimmt, so ist die Verknüpfung wohldefiniert. }{Die Verknüpfung ist kommutativ. }{Die Verknüpfung ist nicht assoziativ. }

}
{} {}




\inputaufgabe
{}
{

Formuliere die \stichwort {binomischen Formeln} {} für zwei reelle Zahlen und beweise die Formeln mit Hilfe des Distributivgesetzes.

}
{} {}




\inputaufgabe
{}
{

Es sei $K$ ein \definitionsverweis {angeordneter Körper}{}{} und
\mavergleichskette
{\vergleichskette
{a }
{ \in }{K }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Zeige, dass die Gleichung
\mavergleichskette
{\vergleichskette
{x^2 }
{ = }{a }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} höchstens zwei Lösungen in $K$ besitzt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Zeige, dass $\sqrt{2}$ eine \definitionsverweis {irrationale Zahl}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Es sei $p$ eine \definitionsverweis {Primzahl}{}{.} Zeige unter Verwendung der eindeutigen Primfaktorzerlegung von natürlichen Zahlen, dass die \definitionsverweis {reelle Zahl}{}{}
\mathl{\sqrt{p}}{} \definitionsverweis {irrational}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Besitzen Sie eine geometrische Intuition zur Addition von zwei gegebenen Zahlen auf der reellen Zahlengeraden?

Besitzen Sie eine geometrische Intuition zur Multiplikation von zwei gegebenen Zahlen auf der reellen Zahlengeraden?

}
{} {}

Die folgende Aufgabe soll allein unter Bezug auf die Anordnungsaxiome der reellen Zahlen gezeigt werden \zusatzklammer {also ohne Bezug auf die Anschauung der Zahlengeraden} {} {.}


\inputaufgabe
{}
{

Zeige, dass für reelle Zahlen die folgenden Eigenschaften gelten. \aufzaehlungacht{Es ist
\mavergleichskette
{\vergleichskette
{1 }
{ \geq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Aus
\mavergleichskette
{\vergleichskette
{a }
{ \geq }{b }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{c }
{ \geq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} folgt
\mavergleichskette
{\vergleichskette
{ac }
{ \geq }{bc }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Aus
\mavergleichskette
{\vergleichskette
{a }
{ \geq }{b }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} und
\mavergleichskette
{\vergleichskette
{c }
{ \leq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} folgt
\mavergleichskette
{\vergleichskette
{ac }
{ \leq }{bc }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Es ist
\mavergleichskette
{\vergleichskette
{a^2 }
{ \geq }{0 }
{ }{ }
{ }{ }
{ }{}
} {}{}{.} }{Aus
\mavergleichskette
{\vergleichskette
{a }
{ \geq }{b }
{ \geq }{0 }
{ }{ }
{ }{ }
} {}{}{} folgt
\mavergleichskette
{\vergleichskette
{a^n }
{ \geq }{b^n }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für alle
\mavergleichskette
{\vergleichskette
{n }
{ \in }{\N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Aus
\mavergleichskette
{\vergleichskette
{a }
{ \geq }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} folgt
\mavergleichskette
{\vergleichskette
{a^n }
{ \geq }{a^m }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} für ganze Zahlen
\mavergleichskette
{\vergleichskette
{n }
{ \geq }{m }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Aus
\mavergleichskette
{\vergleichskette
{a }
{ > }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} folgt
\mavergleichskette
{\vergleichskette
{ { \frac{ 1 }{ a } } }
{ > }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Aus
\mavergleichskette
{\vergleichskette
{a }
{ > }{b }
{ > }{0 }
{ }{ }
{ }{ }
} {}{}{} folgt
\mavergleichskette
{\vergleichskette
{ { \frac{ 1 }{ a } } }
{ > }{ { \frac{ 1 }{ b } } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }

}
{} {}

Vor den nächsten beiden Aufgaben erinnern wir an die beiden folgenden Definitionen.


Zu zwei \definitionsverweis {reellen Zahlen}{}{} \mathkor {} {x} {und} {y} {} heißt
\mathdisp {{ \frac{ x+y }{ 2 } }} { }
das \definitionswort {arithmetische Mittel}{.}


Zu zwei nichtnegativen \definitionsverweis {reellen Zahlen}{}{} \mathkor {} {x} {und} {y} {} heißt
\mathdisp {\sqrt{ x \cdot y}} { }
das \definitionswort {geometrische Mittel}{.}





\inputaufgabe
{}
{

Es seien
\mavergleichskette
{\vergleichskette
{ x }
{ < }{ y }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} reelle Zahlen. Zeige, dass für das \definitionsverweis {arithmetische Mittel}{}{} ${ \frac{ x+y }{ 2 } }$ die Beziehung
\mavergleichskettedisp
{\vergleichskette
{x }
{ <} { { \frac{ x+y }{ 2 } } }
{ <} {y }
{ } {}
{ } {}
} {}{}{} gilt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es seien \mathkor {} {x} {und} {y} {} zwei nichtnegative reelle Zahlen. Zeige, dass das \definitionsverweis {arithmetische Mittel}{}{} der beiden Zahlen mindestens so groß wie ihr \definitionsverweis {geometrisches Mittel}{}{} ist.

}
{} {}




\inputaufgabe
{}
{

Beweise die folgenden Eigenschaften für die \definitionsverweis {Betragsfunktion}{}{} \maabbeledisp {} {\R} {\R } {x} {\betrag { x } } {,}\zusatzklammer {dabei seien $x,y$ beliebige reelle Zahlen} {} {.}\aufzaehlungacht{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { x } }
{ \geq }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { x } }
{ = }{ 0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} genau dann, wenn
\mavergleichskette
{\vergleichskette
{x }
{ = }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. }{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { x } }
{ = }{\betrag { y } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} genau dann, wenn
\mavergleichskette
{\vergleichskette
{x }
{ = }{y }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} oder
\mavergleichskette
{\vergleichskette
{x }
{ = }{-y }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist. }{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { y-x } }
{ = }{ \betrag { x-y } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { xy } }
{ = }{ \betrag { x } \betrag { y } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Für
\mavergleichskette
{\vergleichskette
{x }
{ \neq }{0 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} ist
\mavergleichskette
{\vergleichskette
{ \betrag { x^{-1} } }
{ = }{ \betrag { x }^{-1} }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { x+y } }
{ \leq }{ \betrag { x } + \betrag { y } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} \zusatzklammer {\stichwort {Dreiecksungleichung für den Betrag} {}} {} {.} }{Es ist
\mavergleichskette
{\vergleichskette
{ \betrag { x+y } }
{ \geq }{ \betrag { x } - \betrag { y } }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} }

}
{} {}




\inputaufgabegibtloesung
{}
{

Beweise die \stichwort {Bernoulli-Ungleichung} {,} das ist die Aussage, dass für reelle Zahlen
\mathl{x \geq -1}{} und
\mathl{n \in \N}{} die Abschätzung
\mavergleichskettedisp
{\vergleichskette
{ { \left( 1+x \right) }^n }
{ \geq} { 1+nx }
{ } { }
{ } { }
{ } { }
} {}{}{} gilt.

}
{} {}




\inputaufgabegibtloesung
{}
{

Es sei $x$ eine \definitionsverweis {reelle Zahl}{}{,}
\mavergleichskette
{\vergleichskette
{x }
{ \neq }{1 }
{ }{ }
{ }{ }
{ }{ }
} {}{}{.} Beweise für
\mavergleichskette
{\vergleichskette
{n }
{ \in }{ \N }
{ }{ }
{ }{ }
{ }{ }
} {}{}{} durch Induktion die Beziehung
\mavergleichskettedisp
{\vergleichskette
{ \sum_{k = 0}^n x^k }
{ =} { { \frac{ x^{n+1} -1 }{ x-1 } } }
{ } { }
{ } { }
{ } { }
} {}{}{.}

}
{} {}




\inputaufgabe
{}
{

Es sei
\mavergleichskettedisp
{\vergleichskette
{ p }
{ \neq} { 2,5 }
{ } { }
{ } { }
{ } { }
} {}{}{} eine \definitionsverweis {Primzahl}{}{.} Zeige, dass es eine natürliche Zahl der Form \zusatzklammer {im Dezimalsystem} {} {}
\mathdisp {111 \ldots 111} { }
gibt, die ein \definitionsverweis {Vielfaches}{}{} von $p$ ist.

}
{} {Tipp: Verwende Aufgabe 2.27 mit \mathlk{a=10}{} und \mathlk{p=d}{} und die vorstehende Aufgabe.}




\inputaufgabe
{}
{

Es seien drei Punkte
\mavergleichskette
{\vergleichskette
{ P_1,P_2,P_3 }
{ \in }{ \Q^2 }
{ \subset }{ \R^2 }
{ }{ }
{ }{ }
} {}{}{} gegeben. Zeige, dass der Flächeninhalt des durch diese drei Punkte bestimmten Dreiecks eine rationale Zahl ist.

}
{} {}




\inputaufgabe
{}
{

Zeige, dass es kein \definitionsverweis {nichtausgeartetes}{}{} \definitionsverweis {gleichseitiges Dreieck}{}{} im $\R^2$ gibt, dessen sämtliche Ecken rationale Koordinaten besitzen.

}
{} {}






\zwischenueberschrift{Die Freigetränk-Aufgabe}

Für die richtige Lösung der nächsten Aufgabe gibt es heute abend ein Freigetränk, nur die ersten fünf Lösungen werden prämiert. Ein Polynom \zusatzklammer {oder eine Polynomfunktion} {} {} ist ein Ausdruck der Form
\mathl{a_dx^d+a_{d-1}x^{d-1} + \cdots + a_2x^2 + a_1 x^1 + a_0 x^0}{,} wobei die Koeffizienten $a_i$ reelle Zahlen sind.


\inputaufgabe
{}
{

Zwei Personen $A$ und $B$ spielen Polynome-Erraten. Dabei denkt sich $A$ ein Polynom $P(x)$ aus, wobei alle Koeffizienten aus $\N$ sein müssen. Person $B$ darf fragen, was der Wert
\mathl{P(n_1), P(n_2) , \ldots , P(n_r)}{} zu gewissen natürlichen Zahlen
\mathl{n_1 , n_2 , \ldots , n_r}{} ist. Dabei darf $B$ diese Zahlen beliebig wählen und dabei auch vorhergehende Antworten berücksichtigen. Ziel ist es, das Polynom zu erschließen.

Entwickle eine Fragestrategie für $B$, die immer zur Lösung führt und bei der die Anzahl der Fragen \zusatzklammer {unabhängig vom Polynom} {} {} beschränkt ist.

}
{} {}

<< | Kurs:Vorkurs Mathematik (Osnabrück 2021) | >>

PDF-Version dieses Arbeitsblattes

Zur Vorlesung (PDF)