Kurvendiskussion/e hoch -1 durch x/Aufgabe/Lösung


a) Die Ableitung von ist

Dies ist stets positiv, sodass die Funktion auf den beiden Teilintervallen und jeweils streng wachsend ist. Insgesamt ist die Funktion aber nicht wachsend, da die Werte zu negativem stets größer als die Werte zu positivem sind.

b) Für ist , da der Exponent positiv ist. Für ist , da der Exponent negativ ist. Daher haben insbesondere negative und positive reellen Zahlen unter unterschiedliche Werte. Da im negativen Bereich als auch im positiven Bereich strenges Wachstum vorliegt, ist die Abbildung insgesamt injektiv.

c) Für negatives durchläuft sämtliche positiven Zahlen, sodass das offene Intervall durchläuft. Für positives durchläuft sämtliche negativen Zahlen, sodass das offene Intervall durchläuft. Das Bild ist also .

d) Aus folgt durch Äquivalenzumformungen und damit , die Umkehrabbildung ist also

e)