Luft/Gasgemisch
Gas | Formel | Volumenanteil | Massenanteil |
---|---|---|---|
Hauptbestandteile der trockenen Luft auf Meereshöhe | |||
Stickstoff | N2 | 78,084 % | 75,518 % |
Sauerstoff | O2 | 20,942 % | 23,135 % |
Argon | Ar | 0,934 % | 1,288 % |
Zwischensumme | 99,960 % | 99,941 % | |
Gehalt an Spurengasen (eine Auswahl) | |||
Kohlenstoffdioxid | CO2 | 0,038 % oder 380 ppm |
0,058 % oder 580 ppm |
Neon | Ne | 18,180 ppm | 12,67 ppm |
Helium | He | 5,240 ppm | 0,72 ppm |
Methan | CH4 | 1,760 ppm | 0,97 ppm |
Krypton | Kr | 1,140 ppm | 3,30 ppm |
Wasserstoff | H2 | ~500 ppb | 36 ppb |
Distickstoffoxid | N2O | 317 ppb | 480 ppb |
Kohlenstoffmonoxid | CO | 50–200 ppb | 50–200 ppb |
Xenon | Xe | 87 ppb | 400 ppb |
Dichlordifluormethan (CFC-12) | CCl2F2 | 535 ppt | 2200 ppt |
Trichlorfluormethan (CFC-11) | CCl3F | 226 ppt | 1100 ppt |
Chlordifluormethan (HCFC-22) | CHClF2 | 160 ppt | 480 ppt |
Tetrachlorkohlenstoff | CCl4 | 96 ppt | 510 ppt |
Trichlortrifluorethan (CFC-113) | C2Cl3F3 | 80 ppt | 520 ppt |
1,1,1-Trichlorethan | CH3-CCl3 | 25 ppt | 115 ppt |
1,1-Dichlor-1-fluorethan (HCFC-141b) | CCl2F-CH3 | 17 ppt | 70 ppt |
1-Chlor-1,1-difluorethan (HCFC-142b) | CClF2-CH3 | 14 ppt | 50 ppt |
Schwefelhexafluorid | SF6 | 5 ppt | 25 ppt |
Bromchlordifluormethan | CBrClF2 | 4 ppt | 25 ppt |
Bromtrifluormethan | CBrF3 | 2,5 ppt | 13 ppt |
Gehalt an radioaktiven Stoffen | |||
Radiokohlenstoff | 14CO2 | 10−13 % | |
Radon | Rn | 10−19 % | |
Gesamtmasse (trocken) | 100 % | 5,135 · 1015 t | |
Wasser | +0,4 % | +0,013 · 1015 t | |
Gesamtmasse (feucht) | 100,4 % | 5,148 · 1015 t |
Die Anteile der Atmosphärengase sind keine Naturkonstanten. In der seit Jahrmilliarden andauernden Entwicklung der Erdatmosphäre veränderte sich die Zusammensetzung ständig und mehrmals grundlegend. Seit 350 Millionen Jahren sind die Hauptbestandteile weitgehend stabil. Die aktuelle Mischung ist für trockene Luft in der Tabelle rechts wiedergegeben, wobei zwischen Hauptbestandteilen und Spurengasen unterschieden wird. Die angegebenen Konzentrationen stellen globale Mittelwerte für die freie Troposphäre dar. Die der chemisch stabilen Komponenten sind abseits von Quellen in der gesamten Homosphäre einheitlich, also bis in eine Höhe von etwa 100 km. Bei reaktiven Spurenstoffen gibt es erhebliche Gradienten.
Trennung in die Bestandteile
BearbeitenTiefkalt verflüssigt kann Flüssige Luft durch fraktionierte Destillation in ihre Bestandteile zerlegt werden, dies erfolgt meist mit Hilfe des Linde-Verfahrens.
Hauptbestandteile
BearbeitenStickstoff
BearbeitenDer Hauptbestandteil der Luft ist chemisch inert. Er wird durch die natürliche (biotische und abiotische) Stickstofffixierung organisch gebunden und damit für Lebewesen nutzbar. Technisch wird der Luftstickstoff über das Haber-Bosch-Verfahren zur Düngemittelherstellung verwendet. Der entgegengerichtete chemische Prozess – die Denitrifikation verläuft rascher, so dass der Stickstoffkreislauf den Stickstoffanteil in der Atmosphäre kaum verändert.
Aus dem Stickstoff der Luft entstehen durch kosmische Strahlung geringe Mengen radioaktiver Kohlenstoff (14C), was mit der Radiokarbonmethode für archäologische Datierungen ausgenutzt wird.
Sauerstoff
BearbeitenDer molekulare Sauerstoff der Luft ist hauptsächlich durch Photosynthese aus Wasser gebildet worden, wobei die im Laufe der Erdgeschichte hergestellte Menge etwa das Zwanzigfache der heute in der Atmosphäre vorliegenden Menge beträgt. Er verleiht der Atmosphäre ihren oxidierenden Charakter und stellt das wichtigste Oxidationsmittel dar, das für die biologische Atmung bzw. die chemischen Verbrennungsvorgänge benötigt wird.
Der in der Luft enthaltene Sauerstoff ist für alle aeroben Lebewesen zum Leben notwendig. Durch Atmung führen sie Sauerstoff ihrem Stoffwechsel zur Verbrennung (Katabolismus) zu. Pflanzen nutzen das in der Luft enthaltene Kohlenstoffdioxid zur Photosynthese und spalten dabei den Sauerstoff ab. Für fast alle Pflanzen ist dies die einzige Kohlenstoffquelle für vitale Prozesse und Körpersubstanz (Anabolismus). Bei diesem organischen Prozess wird auch fast der gesamte Luftsauerstoff der Luft regeneriert. Der Sauerstoffkreislauf ermöglicht die Aufrechterhaltung und Verteilung eines dauerhaften Vorrats an Ressourcen für Aerobier und photosynthetisch aktive Pflanzen.
Argon
BearbeitenArgon ist als Edelgas äußerst reaktionsträge und mit fast 1 % Gehalt relativ häufig. So ist es kostengünstig und wird als Inertgas etwa beim Metallschweißen und zur Füllung von Glühlampen eingesetzt. Dort und als Füllung von Mehrscheiben-Isolierglas nutzt man die relativ zu Luft etwas geringere Wärmeleitfähigkeit. (Teures, rares Krypton dient in Spezialfällen als noch besseres Wärme-Isoliergas.)
Argon entsteht langsam durch radioaktiven Zerfall von Kalium-40, ist stabil und dichter als Luft und verbleibt daher in der Atmosphäre.
Wasserdampf
BearbeitenDie Umgebungsluft ist nicht trocken, sondern enthält je nach Luftfeuchtigkeit zusätzlich Wasserdampf. Der Wasserdampfgehalt schwankt zwischen einem zehntel Volumenprozent an den Polen und drei Volumenprozent in den Tropen, mit einem Mittelwert von 1,3 % in Bodennähe. Da Wasserdampf leichter ist als trockene Luft (62,5 % des Trockenluftgewichtes), wird feuchte von der umgebenden Luft nach oben gedrückt, wo dann in kühleren Schichten Kondensation auftritt. Oberhalb der Kondensationsschichten ist der Wasserdampfgehalt sehr gering, sodass über die gesamte Atmosphäre gemittelt nur 0,4 Vol.-% Wasserdampf in der Luft sind.
Spurengase
BearbeitenGrößere Schwankungen über teils wenige Jahre und Jahrzehnte sind auch bei den Spurengasen zu verzeichnen. Deren niedrige Konzentrationen können durch vergleichsweise geringe Emissionen beeinflusst werden. Ebenso zeigen Vulkanausbrüche häufig einen kurzfristigen Einfluss.
Kohlenstoffdioxid
BearbeitenNach seinem Anteil ist Kohlenstoffdioxid ein Spurengas, aber als das – unter Berücksichtigung von Wasserdampf – fünfthäufigste Atmosphärengas. Wegen seiner Bedeutung für Klima und Lebewesen wird es oft zu den Hauptbestandteilen der Luft gerechnet.
Die biologische Hauptbedeutung des Kohlenstoffdioxids (umgangssprachlich oft auch als Kohlendioxid bezeichnet) liegt in seiner Rolle als Kohlenstofflieferant für die Photosynthese. Die atmosphärische Kohlenstoffdioxidkonzentration wirkt stark auf das Pflanzenwachstum. Durch den lichtabhängigen Stoffwechselzyklus der Pflanzen, also die Wechselbeziehung zwischen Atmung und Photosynthese, schwanken die bodennahen CO2-Konzentrationen im Tagesgang. Es zeigt sich bei ausreichender Pflanzendecke ein nächtliches Maximum und dementsprechend ein Minimum am Tag. Der gleiche Effekt ist im Jahresverlauf vorhanden, da die außertropische Vegetation ausgeprägte Vegetationsperioden besitzt. Auf der Nordhalbkugel besteht ein Maximum im Zeitraum März bis April und ein Minimum im Oktober oder November. Dazu trägt auch die Heizperiode durch erhöhten Verbrauch fossiler Brennstoffe bei.
Insgesamt hat der Kohlenstoffdioxidgehalt seit Beginn der Industrialisierung um über 40 % zugenommen. Dies ist im Zusammenhang mit dem anthropogenen Treibhauseffekt eine der Ursachen für die globale Erwärmung. 2013 überstieg die CO2-Konzentration an der Messstation Mauna Loa erstmals den Wert von 400 ppm.[1]
Edelgase
BearbeitenWährend Argon mit rund 1 % zu den Hauptbestandteilen der Luft gehört (siehe oben), zählen die weiteren Edelgase Neon, Helium und Krypton mit Volumenanteilen von jeweils > 1 ppm zu den Spurengasen (vgl. Tabelle). Noch seltener ist Xenon (Volumenanteil < 0,1 ppm). Radon ist das seltenste Edelgas in der Luft (mittlerer Volumenanteil 1:1021), kann jedoch – isotopenabhängig – über seine Radioaktivität gut bestimmt werden.
Helium wird bei jedem radioaktiven Alpha-Zerfall frei. Helium ist viel leichter als Luft und entweicht in den Weltraum. Auch das zweitleichteste Edelgas Neon verflüchtigt sich dorthin, so dass von diesen beiden nur Spuren in der Atmosphäre vorkommen.
Aus manchem Gestein dringt als Glied radioaktiver Zerfallsreihen Radon, das sich in Kellern anreichern kann und strahlend weiterzerfällt.
Ozon
BearbeitenFür die Stratosphäre werden Ozonwerte oftmals nicht in Anteilen, sondern in der Dobson-Einheit angegeben. Da die Werte zudem von der Höhe (Ozonschicht, bodennahes Ozon) sowie von Wetterlage, Temperatur, Schadstoffbelastung und Uhrzeit abhängen und Ozon sich sowohl schnell bildet als auch wieder zerfällt, ist dieser Wert sehr variabel. Aufgrund der hohen Reaktivität von Ozon spielt es bei chemischen Reaktionen vielfältiger Art in der Atmosphäre eine zentrale Rolle. Ein Beispiel sind die ODEs (ozone depletion events), bei denen während des polaren Frühlings regelmäßig starke Einbrüche in der Ozonkonzentration von normalerweise 20–40 ppb auf < 5 ppb beobachtet werden können. Diese Erscheinungen werden beispielsweise durch die Freisetzung von Halogenen durch natürliche Prozesse oder durch Mischung von Luftmassen bewirkt. Typische Ozonkonzentrationen in gemäßigten Breiten und besiedeltem Gebiet sind 30–60 ppb auf der Nordhalbkugel und tendenziell ca. 10 ppb weniger auf der Südhalbkugel aufgrund der Rolle von Ozon in der Stickoxidchemie.
Kohlenstoffmonoxid
BearbeitenKohlenstoffmonoxid (umgangssprachlich oft auch als Kohlenmonoxid bezeichnet) ist ein unsichtbares brennbares giftiges Gas, das bei der unvollständigen Verbrennung von kohlenstoffhaltigen Substanzen entsteht. Es blockiert den Sauerstofftransport im Blut (Kohlenstoffmonoxidintoxikation) und kann schon in geringen Dosen zum Tod führen. Auch schädigt es die Photosynthese der Pflanzen. Es bildet sich z. B. beim Tabakrauchen und im Verbrennungsmotor. Autoabgase ohne Abgasnachbehandlung durch einen Fahrzeugkatalysator können bis zu 4 % CO enthalten, der Standardwert für Tabakrauch. Brände der Vegetation sind mit ca. 60 % der Emissionen weltweit Hauptquelle für Kohlenstoffmonoxid.
Weitere Spurengase (Auswahl)
Bearbeiten- Methan
- Wasserstoff
- Distickstoffoxid und andere Stickoxide
- Hydroxyl-Radikal
- Peroxyacetylnitrat
- Chloroxide, Iodoxide und Bromoxide und molekulares Iod
- Schwefeldioxid, neben anthropogenen Quellen hauptsächlich aus Dimethylsulfid und Vulkanen.
- organische Verbindungen, wie auch Formaldehyd und Glyoxal die oftmals durch Oxidation oder Photolyse aus längerkettigen organischen Verbindungen entstehen, beispielsweise pflanzliche Pinene
- halogenierte Kohlenwasserstoffe biogener und anthropogener Natur
Quellen
Bearbeiten- ↑ The Keeling Curve A daily record of atmospheric carbon dioxide