Maschinelles Lernen/überwachtes Lernen
Einleitung
BearbeitenDer Algorithmus lernt eine Funktion aus gegebenen Paaren von Ein- und Ausgaben. Dabei stellt während des Lernens ein „Lehrer“ den korrekten Funktionswert zu einer Eingabe bereit. Ziel beim überwachten Lernen ist, dass dem Netz nach mehreren Rechengängen mit unterschiedlichen Ein- und Ausgaben die Fähigkeit antrainiert wird, Assoziationen herzustellen.
Veranschaulichung
BearbeitenBeispiel - Automatische Klassifizierung
BearbeitenEin Teilgebiet des überwachten Lernens ist die automatische Klassifizierung. Ein Anwendungsbeispiel wäre die Handschrifterkennung. Dabei bekommt das System Bildinformationen über geschrieben Buchstaben oder ganze Wörter und erhält gleichzeitig die Information, welche Buchstaben in dem Bild kodiert waren. Die Klassifizierung hat als Eingaberaum dann Bilder und als Ausgaberaum Buchstaben bzw. Buchstabenfolgen.
Zeitliche Veränderung eines Systems
BearbeitenIn dem Begriff des "überwachten maschinelles Lernens" eines System steckt bereits eine zeitliche Veränderung des Systems in der Zeit, wobei die Ausgabe überwacht wird und z.B. die Abweichung von einem Sollwert aus den Trainingsdaten für die Anpassung der Lernparameter verwendet wird. In der folgenden Lernressource wird daher ein Maschinelles Lernsystem (kurz ML-System) mit einem Zeitindex versehen, das den Zustand des ML-Systems zum Zeitpunkt .
Maschinelles Lernen als Funktionenfolge
BearbeitenIn dieser Lernressource wird Maschinelles Lernen (ML) als eine Funktionenfolge betrachtet, das sich in der Zeit verändert. ist zu jedem Zeitpunkt eine Abbildung von einem Definitionsbereich in den Wertebereich .
Verallgemeinerungsfähigkeit
BearbeitenEin künstliches System, das aus Beispielen lernt, kann "verallgemeinern", wenn nicht nur für die Trainingsdaten (z.B. Ein-Ausgabepaare aus dem Ein-Ausgabegrundraum) korrekt Ausgaben produziert werden, sondern auch für neue unbekannte Eingaben korrekte bzw. akzeptabel gute Ausgaben produziert werden.
Ein-Ausgabepaare beim überwachtes Lernen
BearbeitenWenn man Ein-Ausgabepaare als Trainingsdaten verwendet, spricht man von überwachtem Lernen. Die entspricht den erwarteten/empfohlenen Ausgaben einer "lehrenden" bzw. trainierenden Instanz. In der Trainingsphase bekommt das System Daten der Form der Ein-Ausgabepaare und in der Testphase.
Unterkategorien für Überwachtes Lernen
BearbeitenEs lassen sich noch einige Unterkategorien für Überwachtes Lernen identifizieren, die in der Literatur häufiger erwähnt werden:
- Teilüberwachtes Lernen (englisch semi-supervised learning) Nur für einen Teil der Eingaben sind die dazugehörigen Ausgaben bekannt.[1]
- Aktives Lernen (englisch active learning) Der Algorithmus hat die Möglichkeit, für einen Teil der Eingaben die korrekten Ausgaben zu erfragen. Dabei muss der Algorithmus die Fragen bestimmen, welche einen hohen Informationsgewinn versprechen, um die Anzahl der Fragen möglichst klein zu halten.[2]
- Selbständiges Lernen (englisch self-training) Dieser Algorithmus kann in zwei wesentliche Komponenten eingeteilt werden. Die erste Algorithmuskomponente (Lehrer) leitet aus einem bestehenden gelabelten Datensatz weitere Datensätze mit Pseudolabeln her. Die zweite Algorithmuskomponente lernt nun aus dem erweiterten gelabelten Datensatz und wendet gefundene Muster für ihr eigenes Modell an.[3]
Siehe auch
BearbeitenQuellennachweise
Bearbeiten- ↑ Ralf Mikut: Data Mining in der Medizin und Medizintechnik. KIT Scientific Publishing, 2008, ISBN 978-3-86644-253-5, S. 34 (Google books).
- ↑ Paul Fischer: Algorithmisches Lernen. Springer-Verlag, 2013, ISBN 978-3-663-11956-2, S. 6–7 (Google books).
- ↑ Self-training with Noisy Student improves ImageNet classification. In: Arxiv. Abgerufen am 20. Dezember 2019 (englisch).