Mathematik für Anwender 1/Gemischte Satzabfrage/8/Aufgabe/Lösung


  1. Es seien und reelle Folgen. Es gelte

    und und

    konvergieren beide gegen den gleichen Grenzwert . Dann konvergiert auch gegen diesen Grenzwert .
  2. Es sei ein offenes Intervall und ein Punkt. Es seien

    stetige Funktionen, die auf differenzierbar seien mit und mit für . Es sei vorausgesetzt, dass der Grenzwert

    existiert. Dann existiert auch der Grenzwert

    und sein Wert ist ebenfalls .
  3. Es sei ein Körper und . Dann gilt für Matrizen die Beziehung