Matrix/Nulltest mit Rang 1/Rechts/Aufgabe/Lösung


Es sei

angenommen. Dann gibt es einen Vektor mit

Wir ergänzen zu einer Basis

von . Es sei die Matrix bezüglich der Standardbasis, die die durch und für festgelegte lineare Abbildung beschreibt. Der Rang von ist , da ja das Bild gerade ist, und es ist

also ist

im Widerspruch zur Voraussetzung.