Es ist
und ebenso
somit sind dies Beobachtervektoren.
Es sei umgekehrt ein Beobachtervektor, also
-
Wir müssen zeigen, dass dieser Vektor von einer der angegebenen Gestalt ist und betrachten daher die Gleichung
-
Multiplikation mit führt auf
-
bzw. auf
-
und auf
-
wobei die Wurzel stets existiert, und zwar gleich
ist. Je nachdem, ob
positiv oder negativ ist, muss man
entsprechend wählen.