Für zwei nicht kolineare Vektoren z 1 {\displaystyle z_{1}} und z 2 {\displaystyle z_{2}} existieren genau zwei λ ∈ R {\displaystyle \lambda \in \mathbb {R} } , sodass λ z 1 + z 2 {\displaystyle \lambda z_{1}+z_{2}} lichtartig ist. Dann gilt:
0 = ⟨ λ z 1 + z 2 , λ z 1 + z 2 ⟩ = λ 2 ⟨ z 1 , z 1 ⟩ + 2 ⟨ z 1 , z 2 ⟩ + ⟨ z 2 , z 2 ⟩ {\displaystyle 0=\langle \lambda z_{1}+z_{2},\lambda z_{1}+z_{2}\rangle =\lambda ^{2}\langle z_{1},z_{1}\rangle +2\langle z_{1},z_{2}\rangle +\langle z_{2},z_{2}\rangle }
Dann muss jedoch 4 [ ⟨ z 1 , z 2 ⟩ 2 − ⟨ z 1 , z 1 ⟩ ⟨ z 2 , z 2 ⟩ ] > 0 {\displaystyle 4[\langle z_{1},z_{2}\rangle ^{2}-\langle z_{1},z_{1}\rangle \langle z_{2},z_{2}\rangle ]>0} gelten, dies impliziert jedoch ⟨ z 1 , z 2 ⟩ 2 > ⟨ z 1 , z 1 ⟩ ⋅ ⟨ z 2 , z 2 ⟩ {\displaystyle \langle z_{1},z_{2}\rangle ^{2}>\langle z_{1},z_{1}\rangle \cdot \langle z_{2},z_{2}\rangle }
Sind z 1 {\displaystyle z_{1}} und z 2 {\displaystyle z_{2}} kolinear, so existiert ein λ ≠ 0 ∈ R {\displaystyle \lambda \neq 0\in \mathbb {R} } mit z 1 = λ z 2 {\displaystyle z_{1}=\lambda z_{2}} , dann gilt:
⟨ z 1 , z 2 ⟩ 2 = ⟨ z 2 , z 1 ⟩ ⋅ ⟨ z 1 , z 2 ⟩ = ⟨ 1 λ z 1 , z 1 ⟩ ⋅ ⟨ λ z 2 , z 2 ⟩ = ⟨ z 1 , z 1 ⟩ ⋅ ⟨ z 2 , z 2 ⟩ {\displaystyle \langle z_{1},z_{2}\rangle ^{2}=\langle z_{2},z_{1}\rangle \cdot \langle z_{1},z_{2}\rangle =\langle {\frac {1}{\lambda }}z_{1},z_{1}\rangle \cdot \langle \lambda z_{2},z_{2}\rangle =\langle z_{1},z_{1}\rangle \cdot \langle z_{2},z_{2}\rangle }